Adapting and enhancing mussels wandering optimization algorithm for supervised training of neural networks
Membangunkan kaedah latihan yang cekap untuk Rangkaian Neural (NN) dalam mencapai kejituan yang tinggi adalah satu cabaran. Tambahan pula, latihan NN masih lagi memerlukan masa yang lama. Algoritma Pengoptimuman Perayauan Kupang (MWO) ialah satu algoritma pengoptimuman metaheuristik yang baru dan...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | http://eprints.usm.my/35580/1/PhD_Thesis_Abusnaina_Adapting_and__Enhancing_MWO_Algorithm_for_Supervised_Trainnig_of_NN_%281%29.pdf http://eprints.usm.my/35580/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Sains Malaysia |
Language: | English |
id |
my.usm.eprints.35580 |
---|---|
record_format |
eprints |
spelling |
my.usm.eprints.35580 http://eprints.usm.my/35580/ Adapting and enhancing mussels wandering optimization algorithm for supervised training of neural networks Abusnaina, Ahmed A. A. QA75.5-76.95 Electronic computers. Computer science Membangunkan kaedah latihan yang cekap untuk Rangkaian Neural (NN) dalam mencapai kejituan yang tinggi adalah satu cabaran. Tambahan pula, latihan NN masih lagi memerlukan masa yang lama. Algoritma Pengoptimuman Perayauan Kupang (MWO) ialah satu algoritma pengoptimuman metaheuristik yang baru dan telah diinspirasikan secara ekologi oleh tingkah laku pegerakan kupang. Objektif utama bagi tesis ini adalah untuk mencapai prestasi yang terbaik dalam penumpuan masa latihan dan ketepatan pengelasan untuk pengelasan corak dengan mengusulkan kaedah latihan penyeliaan yang baru untuk Rangkaian Neural Buatan (ANN) yang berasaskan penggunaan algoritma MWO. Mempertingkatkan prestasi, terutamanya dalam kejituan pengelasan yang membawa kepada perkenalan versi MWO yang telah di adaptasi; dikenali sebagai algoritma Peningkatan-MWO (E-MWO). Developing efficient training method for Neural Networks (NN) in terms of high accuracy is a challenge. In addition, training NN is still highly-time consuming. The Mussels Wandering Optimization (MWO) is a recent metaheuristic optimization algorithm inspired ecologically by mussels movement behavior. The major objective of this thesis is to achieve better performance in terms of convergence training time and classification accuracy for pattern classification by proposing new supervised training methods for Artificial Neural Networks (ANN) based on the MWO algorithm. Increasing the performance, especially in terms of classification accuracy led to an adapted version of the MWO; known as Enhanced-MWO (E-MWO) algorithm. 2015-04 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/35580/1/PhD_Thesis_Abusnaina_Adapting_and__Enhancing_MWO_Algorithm_for_Supervised_Trainnig_of_NN_%281%29.pdf Abusnaina, Ahmed A. A. (2015) Adapting and enhancing mussels wandering optimization algorithm for supervised training of neural networks. PhD thesis, Universiti Sains Malaysia. |
institution |
Universiti Sains Malaysia |
building |
Hamzah Sendut Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Sains Malaysia |
content_source |
USM Institutional Repository |
url_provider |
http://eprints.usm.my/ |
language |
English |
topic |
QA75.5-76.95 Electronic computers. Computer science |
spellingShingle |
QA75.5-76.95 Electronic computers. Computer science Abusnaina, Ahmed A. A. Adapting and enhancing mussels wandering optimization algorithm for supervised training of neural networks |
description |
Membangunkan kaedah latihan yang cekap untuk Rangkaian Neural (NN) dalam
mencapai kejituan yang tinggi adalah satu cabaran. Tambahan pula, latihan NN masih
lagi memerlukan masa yang lama. Algoritma Pengoptimuman Perayauan Kupang
(MWO) ialah satu algoritma pengoptimuman metaheuristik yang baru dan telah
diinspirasikan secara ekologi oleh tingkah laku pegerakan kupang. Objektif utama bagi
tesis ini adalah untuk mencapai prestasi yang terbaik dalam penumpuan masa latihan
dan ketepatan pengelasan untuk pengelasan corak dengan mengusulkan kaedah latihan
penyeliaan yang baru untuk Rangkaian Neural Buatan (ANN) yang berasaskan
penggunaan algoritma MWO. Mempertingkatkan prestasi, terutamanya dalam kejituan
pengelasan yang membawa kepada perkenalan versi MWO yang telah di adaptasi;
dikenali sebagai algoritma Peningkatan-MWO (E-MWO).
Developing efficient training method for Neural Networks (NN) in terms of high accuracy
is a challenge. In addition, training NN is still highly-time consuming. The Mussels
Wandering Optimization (MWO) is a recent metaheuristic optimization algorithm inspired
ecologically by mussels movement behavior. The major objective of this thesis is to
achieve better performance in terms of convergence training time and classification
accuracy for pattern classification by proposing new supervised training methods for
Artificial Neural Networks (ANN) based on the MWO algorithm. Increasing the
performance, especially in terms of classification accuracy led to an adapted version of the
MWO; known as Enhanced-MWO (E-MWO) algorithm.
|
format |
Thesis |
author |
Abusnaina, Ahmed A. A. |
author_facet |
Abusnaina, Ahmed A. A. |
author_sort |
Abusnaina, Ahmed A. A. |
title |
Adapting and enhancing mussels wandering optimization algorithm for supervised training of neural networks |
title_short |
Adapting and enhancing mussels wandering optimization algorithm for supervised training of neural networks |
title_full |
Adapting and enhancing mussels wandering optimization algorithm for supervised training of neural networks |
title_fullStr |
Adapting and enhancing mussels wandering optimization algorithm for supervised training of neural networks |
title_full_unstemmed |
Adapting and enhancing mussels wandering optimization algorithm for supervised training of neural networks |
title_sort |
adapting and enhancing mussels wandering optimization algorithm for supervised training of neural networks |
publishDate |
2015 |
url |
http://eprints.usm.my/35580/1/PhD_Thesis_Abusnaina_Adapting_and__Enhancing_MWO_Algorithm_for_Supervised_Trainnig_of_NN_%281%29.pdf http://eprints.usm.my/35580/ |
_version_ |
1643708537278300160 |