A Human Community-Based Genetic Algorithm Model (HCBGA)

Sebagai satu model gelintaran, Algoritma Genetik (GA), telah membuktikan kejayaannya dalam banyak apikasi. Walau bagaimanapun, beberapa penyelidik menyatakan bahawa GA mempunyai “convergence” yang perlahan. Keperlahanan ini berpunca daripada kerawakan dalam kebanyakan operasinya. Oleh itu, ramai pen...

Full description

Saved in:
Bibliographic Details
Main Author: Al-Madi, Nagham Azmi Qasim
Format: Thesis
Language:English
Published: 2009
Subjects:
Online Access:http://eprints.usm.my/41558/1/Nagham_Azmi_Qasim_Al-Madi24.pdf
http://eprints.usm.my/41558/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Sains Malaysia
Language: English
id my.usm.eprints.41558
record_format eprints
spelling my.usm.eprints.41558 http://eprints.usm.my/41558/ A Human Community-Based Genetic Algorithm Model (HCBGA) Al-Madi, Nagham Azmi Qasim QA75.5-76.95 Electronic computers. Computer science Sebagai satu model gelintaran, Algoritma Genetik (GA), telah membuktikan kejayaannya dalam banyak apikasi. Walau bagaimanapun, beberapa penyelidik menyatakan bahawa GA mempunyai “convergence” yang perlahan. Keperlahanan ini berpunca daripada kerawakan dalam kebanyakan operasinya. Oleh itu, ramai penyelidik terkini telah menggunakan populasi berstruktur dalam GA untuk mengurangkan kerawakan seperti model algoritma genetik pulau (IGA), model algoritma genetik bersel (CGA) dan model lain. As a general search model, Genetic Algorithm (GA) has proved its success in many applications. However, several researchers argue that GA has slow convergence. This shortfall is due to the randomness in most of its operations. Hence, recently researches have employed structured populations in GA to reduce this randomness, such as in the island genetic algorithm model (IGA), cellular genetic algorithm model (CGA) and other models. 2009-11 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/41558/1/Nagham_Azmi_Qasim_Al-Madi24.pdf Al-Madi, Nagham Azmi Qasim (2009) A Human Community-Based Genetic Algorithm Model (HCBGA). PhD thesis, Universiti Sains Malaysia.
institution Universiti Sains Malaysia
building Hamzah Sendut Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Sains Malaysia
content_source USM Institutional Repository
url_provider http://eprints.usm.my/
language English
topic QA75.5-76.95 Electronic computers. Computer science
spellingShingle QA75.5-76.95 Electronic computers. Computer science
Al-Madi, Nagham Azmi Qasim
A Human Community-Based Genetic Algorithm Model (HCBGA)
description Sebagai satu model gelintaran, Algoritma Genetik (GA), telah membuktikan kejayaannya dalam banyak apikasi. Walau bagaimanapun, beberapa penyelidik menyatakan bahawa GA mempunyai “convergence” yang perlahan. Keperlahanan ini berpunca daripada kerawakan dalam kebanyakan operasinya. Oleh itu, ramai penyelidik terkini telah menggunakan populasi berstruktur dalam GA untuk mengurangkan kerawakan seperti model algoritma genetik pulau (IGA), model algoritma genetik bersel (CGA) dan model lain. As a general search model, Genetic Algorithm (GA) has proved its success in many applications. However, several researchers argue that GA has slow convergence. This shortfall is due to the randomness in most of its operations. Hence, recently researches have employed structured populations in GA to reduce this randomness, such as in the island genetic algorithm model (IGA), cellular genetic algorithm model (CGA) and other models.
format Thesis
author Al-Madi, Nagham Azmi Qasim
author_facet Al-Madi, Nagham Azmi Qasim
author_sort Al-Madi, Nagham Azmi Qasim
title A Human Community-Based Genetic Algorithm Model (HCBGA)
title_short A Human Community-Based Genetic Algorithm Model (HCBGA)
title_full A Human Community-Based Genetic Algorithm Model (HCBGA)
title_fullStr A Human Community-Based Genetic Algorithm Model (HCBGA)
title_full_unstemmed A Human Community-Based Genetic Algorithm Model (HCBGA)
title_sort human community-based genetic algorithm model (hcbga)
publishDate 2009
url http://eprints.usm.my/41558/1/Nagham_Azmi_Qasim_Al-Madi24.pdf
http://eprints.usm.my/41558/
_version_ 1643710254184136704