Characterization and corrosion behaviour of 96.5Sn-3.0Ag-0.5Cu solder on Cu substrate at different reflow reactions

96.5Sn-3.0Ag-0.5Cu (SAC305) thin film solder exhibits different surface characteristics if compared to conventional bulk solder. In thin film solder, the actual surface is comprised of intermetallic layers whereas in the case of conventional solder, the intermetallic layers happened at the interfaci...

Full description

Saved in:
Bibliographic Details
Main Author: Lee, Liu Mei
Format: Thesis
Language:English
Published: 2013
Subjects:
Online Access:http://eprints.usm.my/48025/1/characterization%20and%20corrosion%20behaviour24.pdf
http://eprints.usm.my/48025/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Sains Malaysia
Language: English
id my.usm.eprints.48025
record_format eprints
spelling my.usm.eprints.48025 http://eprints.usm.my/48025/ Characterization and corrosion behaviour of 96.5Sn-3.0Ag-0.5Cu solder on Cu substrate at different reflow reactions Lee, Liu Mei TN1-997 Mining engineering. Metallurgy 96.5Sn-3.0Ag-0.5Cu (SAC305) thin film solder exhibits different surface characteristics if compared to conventional bulk solder. In thin film solder, the actual surface is comprised of intermetallic layers whereas in the case of conventional solder, the intermetallic layers happened at the interfacial region of solder/base metal. This in turn, resulted in different surface microstructure and chemical composition. Moreover, a subtle and unstudied aspect of SAC305 in thin film characteristics was limited. Thus, the effect of solder reflow conditions at various temperatures and times were investigated. Structural and elemental characterizations indicated that Sn, Ag3Sn, and Cli6Sns were present in the as-deposited SAC305 thin film on Cu substrate. After solder reflow, SAC305 thin film was totally reacted and developed into Cu6Sns then Cu3Sn. Cu6Sn5 is located almost exclusively in the volume, whereas Cu3Sn appears as a thin uniform layer structure beneath Cu6Sn5• The Cu3Sn intermetallic layer consistent~y increases with increased temperature but remains within the thickness of Cu6Sn5• The corrosion behavior of bare Cu, as-deposited SAC305/Cu and as-reflowed SAC305/Cu at varying reflow temperatures was investigated by means of potentiodynamic polarization in a 6 M potassium hydroxide (KOH) solution. Bare Cu was found to possess the best corrosion resistance, whereas the as-deposited SAC305/Cu had the lowest corrosion resistance. 2013 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/48025/1/characterization%20and%20corrosion%20behaviour24.pdf Lee, Liu Mei (2013) Characterization and corrosion behaviour of 96.5Sn-3.0Ag-0.5Cu solder on Cu substrate at different reflow reactions. Masters thesis, Universiti Sains Malaysia.
institution Universiti Sains Malaysia
building Hamzah Sendut Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Sains Malaysia
content_source USM Institutional Repository
url_provider http://eprints.usm.my/
language English
topic TN1-997 Mining engineering. Metallurgy
spellingShingle TN1-997 Mining engineering. Metallurgy
Lee, Liu Mei
Characterization and corrosion behaviour of 96.5Sn-3.0Ag-0.5Cu solder on Cu substrate at different reflow reactions
description 96.5Sn-3.0Ag-0.5Cu (SAC305) thin film solder exhibits different surface characteristics if compared to conventional bulk solder. In thin film solder, the actual surface is comprised of intermetallic layers whereas in the case of conventional solder, the intermetallic layers happened at the interfacial region of solder/base metal. This in turn, resulted in different surface microstructure and chemical composition. Moreover, a subtle and unstudied aspect of SAC305 in thin film characteristics was limited. Thus, the effect of solder reflow conditions at various temperatures and times were investigated. Structural and elemental characterizations indicated that Sn, Ag3Sn, and Cli6Sns were present in the as-deposited SAC305 thin film on Cu substrate. After solder reflow, SAC305 thin film was totally reacted and developed into Cu6Sns then Cu3Sn. Cu6Sn5 is located almost exclusively in the volume, whereas Cu3Sn appears as a thin uniform layer structure beneath Cu6Sn5• The Cu3Sn intermetallic layer consistent~y increases with increased temperature but remains within the thickness of Cu6Sn5• The corrosion behavior of bare Cu, as-deposited SAC305/Cu and as-reflowed SAC305/Cu at varying reflow temperatures was investigated by means of potentiodynamic polarization in a 6 M potassium hydroxide (KOH) solution. Bare Cu was found to possess the best corrosion resistance, whereas the as-deposited SAC305/Cu had the lowest corrosion resistance.
format Thesis
author Lee, Liu Mei
author_facet Lee, Liu Mei
author_sort Lee, Liu Mei
title Characterization and corrosion behaviour of 96.5Sn-3.0Ag-0.5Cu solder on Cu substrate at different reflow reactions
title_short Characterization and corrosion behaviour of 96.5Sn-3.0Ag-0.5Cu solder on Cu substrate at different reflow reactions
title_full Characterization and corrosion behaviour of 96.5Sn-3.0Ag-0.5Cu solder on Cu substrate at different reflow reactions
title_fullStr Characterization and corrosion behaviour of 96.5Sn-3.0Ag-0.5Cu solder on Cu substrate at different reflow reactions
title_full_unstemmed Characterization and corrosion behaviour of 96.5Sn-3.0Ag-0.5Cu solder on Cu substrate at different reflow reactions
title_sort characterization and corrosion behaviour of 96.5sn-3.0ag-0.5cu solder on cu substrate at different reflow reactions
publishDate 2013
url http://eprints.usm.my/48025/1/characterization%20and%20corrosion%20behaviour24.pdf
http://eprints.usm.my/48025/
_version_ 1687394539862491136