Real-Time Optimal Control Technique of A Rotary Inverted Pendulum System
This paper presents a real time control technique to stabilize inverted pendulum in the vertical upright position. Stabilize the inverted pendulum is a classical control problem that could be related to some problems in industrial applications. Two common problems that always been encountered by i...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | http://eprints.utem.edu.my/id/eprint/12974/1/Prosiding_ict_rcsb.pdf http://eprints.utem.edu.my/id/eprint/12974/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknikal Malaysia Melaka |
Language: | English |
Summary: | This paper presents a real time control technique to stabilize inverted pendulum in the vertical upright
position. Stabilize the inverted pendulum is a classical control problem that could be related to some
problems in industrial applications. Two common problems that always been encountered by inverted
pendulum system is unstable behavior and nonlinear. This lead to numerous studies on the control
algorithm to balance the inverted pendulum system in the vertical upright position. Generally, inverted
pendulum is mounted on DC motor and is equipped with sensor to measure angular displacement.
Inverted pendulum has the same analogy with human that try to balance a broomstick using fingertip.
Balancing the Inverted Pendulum requires a good control system. Therefore an optimal control
technique is proposed to achieve desired design requirement which are less than 5% overshoot and
less than 5 seconds settling time. The controller is optimized to achieve the best performance result.
Finally the performance of the controller is compared with PID controller as a benchmark. |
---|