Temperature Control And Investigation Of Parabolic Dish Based Concentrating Solar Power (CSP) In Malaysia Environment

In the Renewable Energy Act 2011, the focus is on solar energy particularly the solar Photovoltaic, whereby the solar thermal, such as the Parabolic Dish Concentrating Solar Power (CSP) is not given enough attention. This could be due to the lack of a thorough investigation of implementing solar CSP...

Full description

Saved in:
Bibliographic Details
Main Author: Liaw, Geok Pheng
Format: Thesis
Language:English
English
Published: 2016
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/18170/1/Temperature%20Control%20And%20Investigation%20Of%20Parabolic%20Dish%20Based%20Concentrating%20Solar%20Power%20%28CSP%29%20In%20Malaysia%20Environment%2024%20Pages.pdf
http://eprints.utem.edu.my/id/eprint/18170/2/Temperature%20Control%20And%20Investigation%20Of%20Parabolic%20Dish%20Based%20Concentrating%20Solar%20Power%20%28CSP%29%20In%20Malaysia%20Environment.pdf
http://eprints.utem.edu.my/id/eprint/18170/
https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=100099
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknikal Malaysia Melaka
Language: English
English
id my.utem.eprints.18170
record_format eprints
spelling my.utem.eprints.181702021-10-10T14:50:29Z http://eprints.utem.edu.my/id/eprint/18170/ Temperature Control And Investigation Of Parabolic Dish Based Concentrating Solar Power (CSP) In Malaysia Environment Liaw, Geok Pheng T Technology (General) TJ Mechanical engineering and machinery In the Renewable Energy Act 2011, the focus is on solar energy particularly the solar Photovoltaic, whereby the solar thermal, such as the Parabolic Dish Concentrating Solar Power (CSP) is not given enough attention. This could be due to the lack of a thorough investigation of implementing solar CSP in the Malaysia environment. Nowadays, even though many researchers continue to investigate and study about Parabolic Dish based on Concentration Solar Power (CSP), the findings are not conclusive and do not provide accurate evidence and proof on the potential of CSP development in Malaysia. The missing link in the Parabolic Dish Stirling Engine system model is the control systems, which vary the amount of working gas in the Stirling engine. The temperature of the heater in PD system which has been modelled is easily overheated that which will cause damage to the heater material that will lead to low output efficiency, high thermal losses and effect to the lifespan of the PD system. Therefore, the primary aim of this project was to design a control system to maximize output efficiency during a normal operation by maintaining the heater/absorber temperature at the highest safe operating point to prevent excessive range of threshold to avoid damage to the heater material besides carry out a fundamental investigation on solar CSP, by focusing on Parabolic Dish type in the Malaysia environment. Recent literatures which address the CSP were reviewed. The preliminary considerations and basic thermodynamics of the Stirling engine were to derive a model of dish and Stirling engine. According to literature, the PD system achieves the highest solar for electric efficiency and it is small and modular among CSP technologies. The proposed model showed the idea of PD systems with control system model which vary the amount of working gas in the Stirling engine. The control systems were designed using Matlab /Simulink 2012a. Based on the developed linearized model, an improved temperature controller with transient droop characteristic and Mean Pressure Control (MPC) has been proposed. This temperature controller is effective in reducing the temperature that will improve the performance of the PD system. The overall performance of the system improved more than 78% in output power and energy. Besides, the system can improve in term of sensitivity compare with the PD system without compensate. In addition, the system also reduce thermal losses up to 97.6% which shows significant improvement for the output efficiency to the system. The analysis shows that the PD system is feasible in term of technical but not economically feasible. Unless, when levelised tariff of solar thermal is increase more than RM20.2499/kWh by electrical policy similar as photovoltaic, then the PD system is economic feasible in the Malaysia environment at the moment. 2016 Thesis NonPeerReviewed text en http://eprints.utem.edu.my/id/eprint/18170/1/Temperature%20Control%20And%20Investigation%20Of%20Parabolic%20Dish%20Based%20Concentrating%20Solar%20Power%20%28CSP%29%20In%20Malaysia%20Environment%2024%20Pages.pdf text en http://eprints.utem.edu.my/id/eprint/18170/2/Temperature%20Control%20And%20Investigation%20Of%20Parabolic%20Dish%20Based%20Concentrating%20Solar%20Power%20%28CSP%29%20In%20Malaysia%20Environment.pdf Liaw, Geok Pheng (2016) Temperature Control And Investigation Of Parabolic Dish Based Concentrating Solar Power (CSP) In Malaysia Environment. Masters thesis, Universiti Teknikal Malaysia Melaka. https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=100099
institution Universiti Teknikal Malaysia Melaka
building UTEM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknikal Malaysia Melaka
content_source UTEM Institutional Repository
url_provider http://eprints.utem.edu.my/
language English
English
topic T Technology (General)
TJ Mechanical engineering and machinery
spellingShingle T Technology (General)
TJ Mechanical engineering and machinery
Liaw, Geok Pheng
Temperature Control And Investigation Of Parabolic Dish Based Concentrating Solar Power (CSP) In Malaysia Environment
description In the Renewable Energy Act 2011, the focus is on solar energy particularly the solar Photovoltaic, whereby the solar thermal, such as the Parabolic Dish Concentrating Solar Power (CSP) is not given enough attention. This could be due to the lack of a thorough investigation of implementing solar CSP in the Malaysia environment. Nowadays, even though many researchers continue to investigate and study about Parabolic Dish based on Concentration Solar Power (CSP), the findings are not conclusive and do not provide accurate evidence and proof on the potential of CSP development in Malaysia. The missing link in the Parabolic Dish Stirling Engine system model is the control systems, which vary the amount of working gas in the Stirling engine. The temperature of the heater in PD system which has been modelled is easily overheated that which will cause damage to the heater material that will lead to low output efficiency, high thermal losses and effect to the lifespan of the PD system. Therefore, the primary aim of this project was to design a control system to maximize output efficiency during a normal operation by maintaining the heater/absorber temperature at the highest safe operating point to prevent excessive range of threshold to avoid damage to the heater material besides carry out a fundamental investigation on solar CSP, by focusing on Parabolic Dish type in the Malaysia environment. Recent literatures which address the CSP were reviewed. The preliminary considerations and basic thermodynamics of the Stirling engine were to derive a model of dish and Stirling engine. According to literature, the PD system achieves the highest solar for electric efficiency and it is small and modular among CSP technologies. The proposed model showed the idea of PD systems with control system model which vary the amount of working gas in the Stirling engine. The control systems were designed using Matlab /Simulink 2012a. Based on the developed linearized model, an improved temperature controller with transient droop characteristic and Mean Pressure Control (MPC) has been proposed. This temperature controller is effective in reducing the temperature that will improve the performance of the PD system. The overall performance of the system improved more than 78% in output power and energy. Besides, the system can improve in term of sensitivity compare with the PD system without compensate. In addition, the system also reduce thermal losses up to 97.6% which shows significant improvement for the output efficiency to the system. The analysis shows that the PD system is feasible in term of technical but not economically feasible. Unless, when levelised tariff of solar thermal is increase more than RM20.2499/kWh by electrical policy similar as photovoltaic, then the PD system is economic feasible in the Malaysia environment at the moment.
format Thesis
author Liaw, Geok Pheng
author_facet Liaw, Geok Pheng
author_sort Liaw, Geok Pheng
title Temperature Control And Investigation Of Parabolic Dish Based Concentrating Solar Power (CSP) In Malaysia Environment
title_short Temperature Control And Investigation Of Parabolic Dish Based Concentrating Solar Power (CSP) In Malaysia Environment
title_full Temperature Control And Investigation Of Parabolic Dish Based Concentrating Solar Power (CSP) In Malaysia Environment
title_fullStr Temperature Control And Investigation Of Parabolic Dish Based Concentrating Solar Power (CSP) In Malaysia Environment
title_full_unstemmed Temperature Control And Investigation Of Parabolic Dish Based Concentrating Solar Power (CSP) In Malaysia Environment
title_sort temperature control and investigation of parabolic dish based concentrating solar power (csp) in malaysia environment
publishDate 2016
url http://eprints.utem.edu.my/id/eprint/18170/1/Temperature%20Control%20And%20Investigation%20Of%20Parabolic%20Dish%20Based%20Concentrating%20Solar%20Power%20%28CSP%29%20In%20Malaysia%20Environment%2024%20Pages.pdf
http://eprints.utem.edu.my/id/eprint/18170/2/Temperature%20Control%20And%20Investigation%20Of%20Parabolic%20Dish%20Based%20Concentrating%20Solar%20Power%20%28CSP%29%20In%20Malaysia%20Environment.pdf
http://eprints.utem.edu.my/id/eprint/18170/
https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=100099
_version_ 1715193887921799168