Modeling And Optimization Of Physical Vapour Deposition Coating Process Parameters For Tin Grain Size Using Combined Genetic Algorithms With Response Surface Methodology

Optimization of thin film coating parameters is important in identifying the required output.Two main issues of the process of physical vapor deposition (PVD) are manufacturing costs and customization of cutting tool properties.The aim of this study is to identify optimal PVD coating process paramet...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohamad Jaya, Abdul Syukor, Muhamad, Mohd Razali, Abd Rahman, Md Nizam, Mohammad Jarrah, Mu'ath Ibrahim, Hasan Basari, Abd Samad
Format: Article
Language:English
Published: JATIT & LLS 2015
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/20984/2/Paper1.pdf
http://eprints.utem.edu.my/id/eprint/20984/
http://www.jatit.org/volumes/Vol77No2/10Vol77No2.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknikal Malaysia Melaka
Language: English
Description
Summary:Optimization of thin film coating parameters is important in identifying the required output.Two main issues of the process of physical vapor deposition (PVD) are manufacturing costs and customization of cutting tool properties.The aim of this study is to identify optimal PVD coating process parameters.Three process parameters were selected, namely nitrogen gas pressure (N2),argon gas pressure (Ar),and Turntable Speed (TT),while thin film grain size of titanium nitrite (TiN) was selected as an output response.Coating grain size was characterized using Atomic Force Microscopy (AFM) equipment.In this paper,to obtain a proper output result,an approach in modeling surface grain size of Titanium Nitrite (TiN)coating using Response Surface Method (RSM) has been implemented. Additionally,analysis of variance(ANOVA) was used to determine the significant factors influencing resultant TiN coating grain size.Based on that,a quadratic polynomial model equation was developed to represent the process variables and coating grain size.Then,in order to optimize the coating process parameters, genetic algorithms (GAs) were combined with the RSM quadratic model and used for optimization work.Finally,the models were validated using actual testing data to measure model performances in terms of residual error and prediction interval (PI).The result indicated that for RSM,the actual coating grain size of validation runs data fell within the 95% (PI) and the residual errors were less than 10 nm with very low values, the prediction accuracy of the model is 96.09%.In terms of optimization and reduction the experimental data,GAs could get the best lowest value for grain size then RSM with reduction ratio of ≈6%, ≈5%, respectively.