Self-Powered Thermoelectric Based Cooling System For LCD Panel

Thermoelectric (TE) module converts heat energy into electrical energy where temperature gradient is applied on hot and cold surfaces of the module. Generally, large electronic system or electronic display generates heat which dissipates via the surface of the device which may affect the functional...

Full description

Saved in:
Bibliographic Details
Main Authors: Goh, Siew Yun, Kok, Swee Leong
Format: Article
Language:English
Published: Penerbit Universiti, UTeM 2017
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/21231/2/Self-powered.pdf
http://eprints.utem.edu.my/id/eprint/21231/
http://journal.utem.edu.my/index.php/jtec/article/view/2562
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknikal Malaysia Melaka
Language: English
Description
Summary:Thermoelectric (TE) module converts heat energy into electrical energy where temperature gradient is applied on hot and cold surfaces of the module. Generally, large electronic system or electronic display generates heat which dissipates via the surface of the device which may affect the functionality and lifetime of the systems or devices. Therefore, TE module can be used to utilize the heat and converts it into useful electrical energy. In this paper, TE module will be used to power cooling fan as a self-powered system. Firstly, heat dissipated from an 85 inches Thin-film-transistor liquid-crystal display (TFT LCD) is characterized, which is mainly from the power board of LCD panel. There are three power board are used in the LCD panel. The highest temperature of the power boards of LCD panel are 72.7°C, 68°C, and 38.3°C respectively. After that, heater is used to simulate the heat dissipated for the LCD panel. There are 4 TE modules were used in the lab experiment. TE modules are stacked with each other and the output of each TE modules are connected in series. TE modules are placed between heater and heat sink to generate electrical energy. The open circuit voltage output is 2.8v and the power output is 0.24W. After that, the output will be boosted up by using DC to DC converter. The output voltage obtain is proven to be enough to power up the cooling fan. The operation of the cooling fan depends on the temperature gradient between the heater and heat sink. Therefore, cooling fan will turn ON when it is heating up, and it will turn OFF when it is cooling down.