5G MIMO antenna: Compact design at 28/38 GHz with metamaterial and SAR analysis for mobile phones
Meeting the challenge of preserving the compact form of 5G smartphones while accommodating millimeter-wave (mm-wave) bands with a substantial frequency difference, we have introduced an ultra-compact 4-port dual-band multiple-input, multiple-output (MIMO) antenna. This innovative design utilizes a m...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wydawnictwo SIGMA-NOT
2024
|
Online Access: | http://eprints.utem.edu.my/id/eprint/27578/2/0270204042024104159755.PDF http://eprints.utem.edu.my/id/eprint/27578/ http://pe.org.pl/articles/2024/4/32.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknikal Malaysia Melaka |
Language: | English |
id |
my.utem.eprints.27578 |
---|---|
record_format |
eprints |
spelling |
my.utem.eprints.275782024-07-24T16:01:42Z http://eprints.utem.edu.my/id/eprint/27578/ 5G MIMO antenna: Compact design at 28/38 GHz with metamaterial and SAR analysis for mobile phones Al Gburi, Ahmed Jamal Abdullah Meeting the challenge of preserving the compact form of 5G smartphones while accommodating millimeter-wave (mm-wave) bands with a substantial frequency difference, we have introduced an ultra-compact 4-port dual-band multiple-input, multiple-output (MIMO) antenna. This innovative design utilizes a metamaterial-inspired electromagnetic bandgap (EBG) structure to minimize mutual coupling (MC) effectively across a wide frequency range. Constructed on a Rogers TMM4 substrate, the antenna has overall dimensions of 17.76 x 17.76 mm2. It incorporates four planar patch antennas placed at the corners, arranged perpendicularly. Each antenna element is optimized for dual-band operation at 28/38 GHz, featuring a rectangular patch with four slots and a full ground plane. The gap between patches measures 0.5 λo, and the EBG ensures efficient and cost-effective reduction of mutual coupling among the MIMO antenna elements. Specific absorption rate (SAR) analysis validates the suitability of this MIMO antenna for 5G mobile phones operating within the targeted frequency band. Wydawnictwo SIGMA-NOT 2024 Article PeerReviewed text en http://eprints.utem.edu.my/id/eprint/27578/2/0270204042024104159755.PDF Al Gburi, Ahmed Jamal Abdullah (2024) 5G MIMO antenna: Compact design at 28/38 GHz with metamaterial and SAR analysis for mobile phones. Przeglad Elektrotechniczny, 2024. pp. 171-174. ISSN 0033-2097 http://pe.org.pl/articles/2024/4/32.pdf 10.15199/48.2024.04.32 |
institution |
Universiti Teknikal Malaysia Melaka |
building |
UTEM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknikal Malaysia Melaka |
content_source |
UTEM Institutional Repository |
url_provider |
http://eprints.utem.edu.my/ |
language |
English |
description |
Meeting the challenge of preserving the compact form of 5G smartphones while accommodating millimeter-wave (mm-wave) bands with a substantial frequency difference, we have introduced an ultra-compact 4-port dual-band multiple-input, multiple-output (MIMO) antenna. This innovative design utilizes a metamaterial-inspired electromagnetic bandgap (EBG) structure to minimize mutual coupling (MC) effectively across a wide frequency range. Constructed on a Rogers TMM4 substrate, the antenna has overall dimensions of 17.76 x 17.76 mm2. It incorporates four planar patch antennas placed at the corners, arranged perpendicularly. Each antenna element is optimized for dual-band operation at 28/38 GHz, featuring a rectangular patch with four slots and a full ground plane. The gap between patches measures 0.5 λo, and the EBG ensures efficient and cost-effective reduction of mutual coupling among the MIMO antenna elements. Specific absorption rate (SAR) analysis validates the suitability of this MIMO antenna for 5G mobile phones operating within the targeted frequency band. |
format |
Article |
author |
Al Gburi, Ahmed Jamal Abdullah |
spellingShingle |
Al Gburi, Ahmed Jamal Abdullah 5G MIMO antenna: Compact design at 28/38 GHz with metamaterial and SAR analysis for mobile phones |
author_facet |
Al Gburi, Ahmed Jamal Abdullah |
author_sort |
Al Gburi, Ahmed Jamal Abdullah |
title |
5G MIMO antenna: Compact design at 28/38 GHz with metamaterial and SAR analysis for mobile phones |
title_short |
5G MIMO antenna: Compact design at 28/38 GHz with metamaterial and SAR analysis for mobile phones |
title_full |
5G MIMO antenna: Compact design at 28/38 GHz with metamaterial and SAR analysis for mobile phones |
title_fullStr |
5G MIMO antenna: Compact design at 28/38 GHz with metamaterial and SAR analysis for mobile phones |
title_full_unstemmed |
5G MIMO antenna: Compact design at 28/38 GHz with metamaterial and SAR analysis for mobile phones |
title_sort |
5g mimo antenna: compact design at 28/38 ghz with metamaterial and sar analysis for mobile phones |
publisher |
Wydawnictwo SIGMA-NOT |
publishDate |
2024 |
url |
http://eprints.utem.edu.my/id/eprint/27578/2/0270204042024104159755.PDF http://eprints.utem.edu.my/id/eprint/27578/ http://pe.org.pl/articles/2024/4/32.pdf |
_version_ |
1806430047915999232 |