Functional link neural network with modified bee-firefly learning algorithm for classification task

Classification is one of the most frequent studies in the area of Artificial Neural Network (ANNs). The ANNs are capable of generating a complex mapping between the input and the output space to form arbitrarily complex nonlinear decision boundaries. One of the best-known types of ANNs is the Multil...

Full description

Saved in:
Bibliographic Details
Main Author: Mohmad Hassim, Yana Mazwin
Format: Thesis
Language:English
English
English
Published: 2016
Subjects:
Online Access:http://eprints.uthm.edu.my/10076/2/24p%20YANA%20MAZWIN%20MOHMAD%20HASSIM.pdf
http://eprints.uthm.edu.my/10076/1/YANA%20MAZWIN%20MOHMAD%20HASSIM%20COPYRIGHT%20DECLARATION.pdf
http://eprints.uthm.edu.my/10076/3/YANA%20MAZWIN%20MOHMAD%20HASSIM%20WATERMARK.pdf
http://eprints.uthm.edu.my/10076/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Tun Hussein Onn Malaysia
Language: English
English
English
id my.uthm.eprints.10076
record_format eprints
spelling my.uthm.eprints.100762023-10-11T03:24:00Z http://eprints.uthm.edu.my/10076/ Functional link neural network with modified bee-firefly learning algorithm for classification task Mohmad Hassim, Yana Mazwin QA Mathematics QA76 Computer software Classification is one of the most frequent studies in the area of Artificial Neural Network (ANNs). The ANNs are capable of generating a complex mapping between the input and the output space to form arbitrarily complex nonlinear decision boundaries. One of the best-known types of ANNs is the Multilayer Perceptron (MLP). MLP usually requires a large amount of available measures in order to achieve good classification accuracy. To overcome this, a Functional Link Neural Networks (FLNN) which has a single layer of trainable connection weights is used. The single layer property of FLNN also make the learning algorithm used less complicated compared to MLP network. The standard learning method for tuning weights in FLNN is Backpropagation (BP) learning algorithm. However, the algorithm is prone to get trapped in local minima which affect the performance of FLNN network. This work proposed the implementation of modified Artificial Bee Colony with Firefly algorithm for training the FLNN network to overcome the drawback of BP-learning algorithm. The aim is to introduce an improved learning algorithm that can provide a better solution for training the FLNN network for the task of classification 2016-08 Thesis NonPeerReviewed text en http://eprints.uthm.edu.my/10076/2/24p%20YANA%20MAZWIN%20MOHMAD%20HASSIM.pdf text en http://eprints.uthm.edu.my/10076/1/YANA%20MAZWIN%20MOHMAD%20HASSIM%20COPYRIGHT%20DECLARATION.pdf text en http://eprints.uthm.edu.my/10076/3/YANA%20MAZWIN%20MOHMAD%20HASSIM%20WATERMARK.pdf Mohmad Hassim, Yana Mazwin (2016) Functional link neural network with modified bee-firefly learning algorithm for classification task. Doctoral thesis, Universiti Tun Hussein Onn Malaysia.
institution Universiti Tun Hussein Onn Malaysia
building UTHM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tun Hussein Onn Malaysia
content_source UTHM Institutional Repository
url_provider http://eprints.uthm.edu.my/
language English
English
English
topic QA Mathematics
QA76 Computer software
spellingShingle QA Mathematics
QA76 Computer software
Mohmad Hassim, Yana Mazwin
Functional link neural network with modified bee-firefly learning algorithm for classification task
description Classification is one of the most frequent studies in the area of Artificial Neural Network (ANNs). The ANNs are capable of generating a complex mapping between the input and the output space to form arbitrarily complex nonlinear decision boundaries. One of the best-known types of ANNs is the Multilayer Perceptron (MLP). MLP usually requires a large amount of available measures in order to achieve good classification accuracy. To overcome this, a Functional Link Neural Networks (FLNN) which has a single layer of trainable connection weights is used. The single layer property of FLNN also make the learning algorithm used less complicated compared to MLP network. The standard learning method for tuning weights in FLNN is Backpropagation (BP) learning algorithm. However, the algorithm is prone to get trapped in local minima which affect the performance of FLNN network. This work proposed the implementation of modified Artificial Bee Colony with Firefly algorithm for training the FLNN network to overcome the drawback of BP-learning algorithm. The aim is to introduce an improved learning algorithm that can provide a better solution for training the FLNN network for the task of classification
format Thesis
author Mohmad Hassim, Yana Mazwin
author_facet Mohmad Hassim, Yana Mazwin
author_sort Mohmad Hassim, Yana Mazwin
title Functional link neural network with modified bee-firefly learning algorithm for classification task
title_short Functional link neural network with modified bee-firefly learning algorithm for classification task
title_full Functional link neural network with modified bee-firefly learning algorithm for classification task
title_fullStr Functional link neural network with modified bee-firefly learning algorithm for classification task
title_full_unstemmed Functional link neural network with modified bee-firefly learning algorithm for classification task
title_sort functional link neural network with modified bee-firefly learning algorithm for classification task
publishDate 2016
url http://eprints.uthm.edu.my/10076/2/24p%20YANA%20MAZWIN%20MOHMAD%20HASSIM.pdf
http://eprints.uthm.edu.my/10076/1/YANA%20MAZWIN%20MOHMAD%20HASSIM%20COPYRIGHT%20DECLARATION.pdf
http://eprints.uthm.edu.my/10076/3/YANA%20MAZWIN%20MOHMAD%20HASSIM%20WATERMARK.pdf
http://eprints.uthm.edu.my/10076/
_version_ 1779440619734695936