Low loss waveguide-based Butler matrix with iris coupling control method for millimeterwave applications
This paper proposes a low loss 4 × 4 Butler matrix based on rectangular waveguide cavity resonators technology for millimeterwave beamforming network using iris coupling method. This method has the advantage of controlling the electricalfields and the couplingfactor inside a complex medium such as w...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor&francis
2023
|
Subjects: | |
Online Access: | http://eprints.uthm.edu.my/11648/1/J16159_e7002cba332d9d3a6e4edac8cb3c90d9.pdf http://eprints.uthm.edu.my/11648/ https://doi.org/10.1080/17455030.2021.1880032 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Tun Hussein Onn Malaysia |
Language: | English |
Summary: | This paper proposes a low loss 4 × 4 Butler matrix based on rectangular waveguide cavity resonators technology for millimeterwave beamforming network using iris coupling method. This method has the advantage of controlling the electricalfields and the couplingfactor inside a complex medium such as waveguide cavity resonators. The coupling factor of 6 dB for 4 × 4 Butler matrix is achieved by tuning the iris coupling k-value between the waveguide cavity resonators. Thus, avoiding a higher phase difference losses and component losses at upper millimeterwave bands. To validate the proposed method, CST software simulations are performed under several iris coupling k-values to achieve a 6 dB coupling factor. Then, the proposed 4 × 4 Butler matrix is 3D metal printed using selective laser melting (SLM) technique. The measured reflection and isolation coefficients are observed below −10 dB, with coupling coefficients ranging between −6 and −7 dB. The phase differences
of −42.02°, 42.02°, −130.95°, and 133.3° are achieved at the outputs. It confirmed that using this proposed method has the superiority over the conventional microstrip and waveguide coupling methods by a 1 dB coupling factor loss and a 3° phase difference error. |
---|