Low velocity impact response of laminated textile coir-aramids/epoxy hybrid composites subjected to transverse penetration loading
The hybrid of natural and synthetic fibres in a composite system has gained interest in research field due to the environmental consciousness. Coir natural fibre has been found to have a high potential as impact resistance, in which brittle fibre helps to spread the impact energy over a wider...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | http://eprints.uthm.edu.my/1723/1/24p%20AZRIN%20HANI%20ABDUL%20RASHID.pdf http://eprints.uthm.edu.my/1723/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Tun Hussein Onn Malaysia |
Language: | English |
Summary: | The hybrid of natural and synthetic fibres in a composite system has gained
interest in research field due to the environmental consciousness. Coir natural fibre
has been found to have a high potential as impact resistance, in which brittle fibre
helps to spread the impact energy over a wider area. The focus of the study is to
determine if any improvement in impact response exists as a result of combining
high performance Kevlar synthetic fibre and coir natural fibre in a specified
laminated stacking sequence. In this research, quasi-static experiments were
conducted at the speed of 1.25 mm/s, and low velocity impact tests were conducted
using a 12.7 mm hemispherical impactor at the speed varying from 5 m/s to 17 m/s.
Matlab software was used for curve fitting of the raw data, whereas ANOVA and
DOE via Minitab software were employed for statistical examination to support the
results. The area of the damaged composite was evaluated using the image analysis
technique by Matlab image processing tool. The morphology analysis of the impact
fractured surfaces was also observed by SEM. At the beginning stage, the optimum
impact responses of coir epoxy composites subjected to different reinforcement
architecture, composite manufacturing method, fabric modification and fabric
density were determined. The findings showed that the impact responses could be
effectively controlled by varying material parameters. Coir fibre in the form of
woven structure with dense structure, treated using 6% of NaOH solution and manufactured by compression moulding method was found to be effective in
absorbing and propagating impact energy. The respective coir was then used in
hybrid laminates. Coir/Kevlar epoxy hybrid composites consisted of three interply
laminates layers at six different stacking configurations were developed. It was
observed that the hybrid composite (two coir layers and one Kevlar layer) had
equivalent specific total energy absorption as 100% Kevlar laminate (at three layers).
It can be concluded that the hybrid of coir/Kevlar-epoxy laminated composites had
shown an improved in impact response. It also provides cost-effective materials and
contributes towards green technology which will be of great benefit to the industry
and community. |
---|