Effect of turbulence intensity on turning diffuser performance at various angle of turns
The performances of turning diffuser are highly affected due to the nature of its geometries by the existence of flow separation and dispersion of core and secondary flows. Turning diffusers with potential turbulence intensity may lead to optimum performance. However, there has been yet insufficient...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit Akademia Baru
2020
|
Subjects: | |
Online Access: | http://eprints.uthm.edu.my/5058/1/AJ%202020%20%2872%29.pdf http://eprints.uthm.edu.my/5058/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Tun Hussein Onn Malaysia |
Language: | English |
id |
my.uthm.eprints.5058 |
---|---|
record_format |
eprints |
spelling |
my.uthm.eprints.50582022-01-04T08:06:26Z http://eprints.uthm.edu.my/5058/ Effect of turbulence intensity on turning diffuser performance at various angle of turns Lim, Gim Huang Nordin, Normayati Lim, Chia Chun Abdul Rahim, Nur Shafiqah Mohamed Rasidi, Shamsuri Shariff, Muhammad Zahid Firdaus T Technology (General) TH7005-7699 Heating and ventilation. Air conditioning The performances of turning diffuser are highly affected due to the nature of its geometries by the existence of flow separation and dispersion of core and secondary flows. Turning diffusers with potential turbulence intensity may lead to optimum performance. However, there has been yet insufficient literature on 3-D turning diffuser fluid flow performance analysis by varying inlet turbulence intensity. Hence, this study aims to investigate the effect of turbulence intensity on 30o and 90o 3-D turning diffuser performances. The performances of turning diffusers were scientifically evaluated in term of pressure recovery coefficient, Cp and flow uniformity index, σout while turbulence intensity was varied from 1.5% to 7.5%. This work involved both numerical and experimental methods. ANSYS Computational Fluid Dynamics (CFD) was used for the simulation and Particle Image Velocimetry (PIV) for the experiment. The inlet free-stream turbulence intensity was varied which imposed on the flow by suppressing the separation of the inner wall boundary layer and mixing to provide optimum uniformity of the flow. The pressure recovery increased 8.02% and 9.74% while the flow uniformity improved about 2.95% and 1.60% in 30° case and 90° case respectively. In conclusion, the 7.5% of turbulence intensity is promising to introduce in the ducting flow application so as to improve the pressure recovery and the flow uniformity of both 30° and 90° turning diffuser cases. Penerbit Akademia Baru 2020 Article PeerReviewed text en http://eprints.uthm.edu.my/5058/1/AJ%202020%20%2872%29.pdf Lim, Gim Huang and Nordin, Normayati and Lim, Chia Chun and Abdul Rahim, Nur Shafiqah and Mohamed Rasidi, Shamsuri and Shariff, Muhammad Zahid Firdaus (2020) Effect of turbulence intensity on turning diffuser performance at various angle of turns. CFD Letters, 12 (1). pp. 48-61. ISSN 2180-1363 |
institution |
Universiti Tun Hussein Onn Malaysia |
building |
UTHM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tun Hussein Onn Malaysia |
content_source |
UTHM Institutional Repository |
url_provider |
http://eprints.uthm.edu.my/ |
language |
English |
topic |
T Technology (General) TH7005-7699 Heating and ventilation. Air conditioning |
spellingShingle |
T Technology (General) TH7005-7699 Heating and ventilation. Air conditioning Lim, Gim Huang Nordin, Normayati Lim, Chia Chun Abdul Rahim, Nur Shafiqah Mohamed Rasidi, Shamsuri Shariff, Muhammad Zahid Firdaus Effect of turbulence intensity on turning diffuser performance at various angle of turns |
description |
The performances of turning diffuser are highly affected due to the nature of its geometries by the existence of flow separation and dispersion of core and secondary flows. Turning diffusers with potential turbulence intensity may lead to optimum performance. However, there has been yet insufficient literature on 3-D turning diffuser fluid flow performance analysis by varying inlet turbulence intensity. Hence, this study aims to investigate the effect of turbulence intensity on 30o and 90o 3-D turning diffuser performances. The performances of turning diffusers were scientifically evaluated in term of pressure recovery coefficient, Cp and flow uniformity index, σout while turbulence intensity was varied from 1.5% to 7.5%. This work involved both numerical and experimental methods. ANSYS Computational Fluid Dynamics (CFD) was used for the simulation and Particle Image Velocimetry (PIV) for the experiment. The inlet free-stream turbulence intensity was varied which imposed on the flow by suppressing the separation of the inner wall boundary layer and mixing to provide optimum uniformity of the flow. The pressure recovery increased 8.02% and 9.74% while the flow uniformity improved about 2.95% and 1.60% in 30° case and 90° case respectively. In conclusion, the 7.5% of turbulence intensity is promising to introduce in the ducting flow application so as to improve the pressure recovery and the flow uniformity of both 30° and 90° turning diffuser cases. |
format |
Article |
author |
Lim, Gim Huang Nordin, Normayati Lim, Chia Chun Abdul Rahim, Nur Shafiqah Mohamed Rasidi, Shamsuri Shariff, Muhammad Zahid Firdaus |
author_facet |
Lim, Gim Huang Nordin, Normayati Lim, Chia Chun Abdul Rahim, Nur Shafiqah Mohamed Rasidi, Shamsuri Shariff, Muhammad Zahid Firdaus |
author_sort |
Lim, Gim Huang |
title |
Effect of turbulence intensity on turning diffuser performance at various angle of turns |
title_short |
Effect of turbulence intensity on turning diffuser performance at various angle of turns |
title_full |
Effect of turbulence intensity on turning diffuser performance at various angle of turns |
title_fullStr |
Effect of turbulence intensity on turning diffuser performance at various angle of turns |
title_full_unstemmed |
Effect of turbulence intensity on turning diffuser performance at various angle of turns |
title_sort |
effect of turbulence intensity on turning diffuser performance at various angle of turns |
publisher |
Penerbit Akademia Baru |
publishDate |
2020 |
url |
http://eprints.uthm.edu.my/5058/1/AJ%202020%20%2872%29.pdf http://eprints.uthm.edu.my/5058/ |
_version_ |
1738581330957959168 |