Protein structure prediction using robust principal component analysis and support vector machine
Existence of bioinformatics is to increase the further understanding of biological process. Proteins structure is one of the major challenges in structural bioinformatics. With former knowledge of the structure, the quality of secondary structure, prediction of tertiary structure, and prediction fun...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The International Journal on Data Science (IJODS)
2020
|
Subjects: | |
Online Access: | http://eprints.uthm.edu.my/6238/1/AJ%202020%20%28248%29.pdf http://eprints.uthm.edu.my/6238/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Tun Hussein Onn Malaysia |
Language: | English |
id |
my.uthm.eprints.6238 |
---|---|
record_format |
eprints |
spelling |
my.uthm.eprints.62382022-01-27T06:21:19Z http://eprints.uthm.edu.my/6238/ Protein structure prediction using robust principal component analysis and support vector machine Zakaria, Nur Aini Ali Shah, Zuraini Kasim, Shahreen TJ Mechanical engineering and machinery Existence of bioinformatics is to increase the further understanding of biological process. Proteins structure is one of the major challenges in structural bioinformatics. With former knowledge of the structure, the quality of secondary structure, prediction of tertiary structure, and prediction function of amino acid from its sequence increase significantly. Recently, the gap between sequence known and structure known proteins had increase dramatically. So it is compulsory to understand on proteins structure to overcome this problem so further functional analysis could be easier. The research applying RPCA algorithm to extract the essential features from the original highdimensional input vectors. Then the process followed by experimenting SVM with RBF kernel. The proposed method obtains accuracy by 84.41% for training dataset and 89.09% for testing dataset. The result then compared with the same method but PCA was applied as the feature extraction. The prediction assessment is conducted by analyzing the accuracy and number of principal component selected. It shows that combination of RPCA and SVM produce a high quality classification of protein structure The International Journal on Data Science (IJODS) 2020 Article PeerReviewed text en http://eprints.uthm.edu.my/6238/1/AJ%202020%20%28248%29.pdf Zakaria, Nur Aini and Ali Shah, Zuraini and Kasim, Shahreen (2020) Protein structure prediction using robust principal component analysis and support vector machine. International Journal of Data Science, 1 (1). pp. 14-17. ISSN 2722-2039 |
institution |
Universiti Tun Hussein Onn Malaysia |
building |
UTHM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tun Hussein Onn Malaysia |
content_source |
UTHM Institutional Repository |
url_provider |
http://eprints.uthm.edu.my/ |
language |
English |
topic |
TJ Mechanical engineering and machinery |
spellingShingle |
TJ Mechanical engineering and machinery Zakaria, Nur Aini Ali Shah, Zuraini Kasim, Shahreen Protein structure prediction using robust principal component analysis and support vector machine |
description |
Existence of bioinformatics is to increase the further understanding of biological process. Proteins structure is one of the major challenges in structural bioinformatics. With former knowledge of the structure, the quality of secondary structure, prediction of tertiary structure, and prediction function of amino acid from its sequence increase significantly. Recently, the gap between sequence known and structure known proteins had increase dramatically. So it is compulsory to understand on proteins structure to overcome this problem so further functional analysis could be easier. The research applying RPCA algorithm to extract the essential features from the original highdimensional input vectors. Then the process followed by experimenting SVM with RBF kernel. The proposed method obtains accuracy by 84.41% for training dataset and 89.09% for testing dataset. The result then compared with the same method but PCA was applied as the feature extraction. The prediction assessment is conducted by analyzing the accuracy and number of principal component selected. It shows that combination of RPCA and SVM produce a high quality classification of protein structure |
format |
Article |
author |
Zakaria, Nur Aini Ali Shah, Zuraini Kasim, Shahreen |
author_facet |
Zakaria, Nur Aini Ali Shah, Zuraini Kasim, Shahreen |
author_sort |
Zakaria, Nur Aini |
title |
Protein structure prediction using robust principal component analysis and support vector machine |
title_short |
Protein structure prediction using robust principal component analysis and support vector machine |
title_full |
Protein structure prediction using robust principal component analysis and support vector machine |
title_fullStr |
Protein structure prediction using robust principal component analysis and support vector machine |
title_full_unstemmed |
Protein structure prediction using robust principal component analysis and support vector machine |
title_sort |
protein structure prediction using robust principal component analysis and support vector machine |
publisher |
The International Journal on Data Science (IJODS) |
publishDate |
2020 |
url |
http://eprints.uthm.edu.my/6238/1/AJ%202020%20%28248%29.pdf http://eprints.uthm.edu.my/6238/ |
_version_ |
1738581467354628096 |