Adsorptive membrane for boron removal: challenges and future prospects
The complexity of removing boron compounds from aqueous systems has received serious attention among researchers and inventors in the water treating industry. This is due to the higher level of boron in the aquatic ecosystem, which is caused by the geochemical background and anthropogenic factors. T...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI
2022
|
Subjects: | |
Online Access: | http://eprints.utm.my/103242/1/JuhanaJaafar2022_AdsorptiveMembraneforBoronRemoval.pdf http://eprints.utm.my/103242/ http://dx.doi.org/10.3390/membranes12080798 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Language: | English |
Summary: | The complexity of removing boron compounds from aqueous systems has received serious attention among researchers and inventors in the water treating industry. This is due to the higher level of boron in the aquatic ecosystem, which is caused by the geochemical background and anthropogenic factors. The gradual increase in the distribution of boron for years can become extremely toxic to humans, terrestrial organisms and aquatic organisms. Numerous methods of removing boron that have been executed so far can be classified under batch adsorption, membrane-based processes and hybrid techniques. Conventional water treatments such as coagulation, sedimentation and filtration do not significantly remove boron, and special methods would have to be installed in order to remove boron from water resources. The blockage of membrane pores by pollutants in the available membrane technologies not only decreases their performance but can make the membranes prone to fouling. Therefore, the surface-modifying flexibility in adsorptive membranes can serve as an advantage to remove boron from water resources efficiently. These membranes are attractive because of the dual advantage of adsorption/filtration mechanisms. Hence, this review is devoted to discussing the capabilities of an adsorptive membrane in removing boron. This study will mainly highlight the issues of commercially available adsorptive membranes and the drawbacks of adsorbents incorporated in single-layered adsorptive membranes. The idea of layering adsorbents to form a highly adsorptive dual-layered membrane for boron removal will be proposed. The future prospects of boron removal in terms of the progress and utilization of adsorptive membranes along with recommendations for improving the techniques will also be discussed further. |
---|