The effect of Co-Encapsulated GO-Cu nanofillers on mechanical properties, cell response, and antibacterial activities of Mg-Zn composite
Magnesium-based composites have recently been studied as biodegradable materials for preparing orthopedic implants. In this article, the graphene oxide (GO) and GO-Cu nanosystem has been homogenously dispersed as a reinforcement in the matrix of Mg-Zn (MZ) alloy using the semi powder metallurgy (SPM...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI
2022
|
Subjects: | |
Online Access: | http://eprints.utm.my/103272/1/AhmadFauziIsmail2022_TheEffectofCo-EncapsulatedGOCuNanofillers.pdf http://eprints.utm.my/103272/ http://dx.doi.org/10.3390/met12020207 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Language: | English |
Summary: | Magnesium-based composites have recently been studied as biodegradable materials for preparing orthopedic implants. In this article, the graphene oxide (GO) and GO-Cu nanosystem has been homogenously dispersed as a reinforcement in the matrix of Mg-Zn (MZ) alloy using the semi powder metallurgy (SPM) method, and subsequently, the composite has been successfully manufactured using the spark plasma sintering (SPS) process. GO and GO-Cu reinforced composite displayed a higher compressive strength (~55%) than the unreinforced Mg-Zn sample. GO and GO-Cu dual nanofillers presented a synergistic effect on enhancing the effectiveness of load transfer and crack deflection in the Mg-based matrix. Besides, the GO-Cu dual nanofillers displayed a synergistic influence on antibacterial activity through combining the capturing influences of GO nanosheets with the killing influences of Cu. However, electrochemical and in-vitro immersion evaluation showed that Cu-GO reinforcement had a slightly negative effect on the corrosion behavior of the Mg-Zn sample, but the incorporation of GO enhanced corrosion resistance of the composite. Moreover, MZ/GO and MZ/GO-Cu nanocomposites showed acceptable cytotoxicity to MG-63 cells and revealed a high potential for use as an orthopedic implant material. Based on the research results, MZ/GO-Cu nanocomposite could be used in bone tissue engineering applications. |
---|