Groundwater level prediction using machine learning models: a comprehensive review

Developing accurate soft computing methods for groundwater level (GWL) forecasting is essential for enhancing the planning and management of water resources. Over the past two decades, significant progress has been made in GWL prediction using machine learning (ML) models. Several review articles ha...

Full description

Saved in:
Bibliographic Details
Main Authors: Tao, Hai, Hameed, Mohammed Majeed, Marhoon, Haydar Abdulameer, Mohammad Zounemat Kermani, Mohammad Zounemat Kermani, Heddam, Salim, Kim, Sungwon, Sulaiman, Sadeq Oleiwi, Tan, Mou Leong, Sa’adi, Zulfaqar, Mehr, Ali Danandeh, Allawi, Mohammed Falah, Abba, S. I., Mohamad Zain, Jasni, W. Falah, Mayadah, Jamei, Mehdi, Bokde, Neeraj Dhanraj, Bayatvarkeshi, Maryam, Al-Mukhtar, Mustafa, Bhagat, Suraj Kumar, Tiyasha, Tiyasha, Khedher, Khaled Mohamed, Al-Ansari, Nadhir, Shahid, Shamsuddin, Yaseen, Zaher Mundher
Format: Article
Language:English
Published: Elsevier B.V. 2022
Subjects:
Online Access:http://eprints.utm.my/103432/1/ShamsuddinShahid2022_GroundwaterLevelPredictionusingMachineLearning.pdf
http://eprints.utm.my/103432/
http://dx.doi.org/10.1016/j.neucom.2022.03.014
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
Be the first to leave a comment!
You must be logged in first