Sharpening of thermal satellite imagery from Klang industrial area in peninsular Malaysia using the tsharp approach

Measuring high spatial/temporal industrial heat emission (IHE) is an important step in industrial climate studies. The availability of MODIS data products provides up endless possibilities for both large-area and long-term study. nevertheless, inadequate for monitoring industrial areas. Thus, Therma...

Full description

Saved in:
Bibliographic Details
Main Authors: Dahiru, M. Z., Hashim, M., Hassan, N.
Format: Conference or Workshop Item
Language:English
Published: 2021
Subjects:
Online Access:http://eprints.utm.my/103636/1/MazlanHashim2022_SharpeningofThermalSatelliteImagery.pdf
http://eprints.utm.my/103636/
http://dx.doi.org/10.5194/isprs-archives-XLVI-4-W3-2021-87-2022
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
Description
Summary:Measuring high spatial/temporal industrial heat emission (IHE) is an important step in industrial climate studies. The availability of MODIS data products provides up endless possibilities for both large-area and long-term study. nevertheless, inadequate for monitoring industrial areas. Thus, Thermal sharpening is a common method for obtaining thermal images with higher spatial resolution regularly. In this study, the efficiency of the TsHARP technique for improving the low resolution of the MODIS data product was investigated using Landsat-8 TIR images over the Klang Industrial area in Peninsular Malaysia (PM). When compared to UAV TIR fine thermal images, sharpening resulted in mean absolute differences of about 25 °C, with discrepancies increasing as the difference between the ambient and target resolutions increased. To estimate IHE, the related factors (normalized) industrial area index as NDBI, NDSI, and NDVI were examined. The results indicate that IHE has a substantial positive correlation with NDBI and NDSI (R2 Combining double low line 0.88 and 0.95, respectively), but IHE and NDVI have a strong negative correlation (R2 Combining double low line 0.87). The results showed that MODIS LST at 1000 m resolution can be improved to 100 m with a significant correlation R2 Combining double low line 0.84 and RMSE of 2.38 °C using Landsat 8 TIR images at 30 m, and MODIS LST at 1000 m resolution can still be improved to 100 m with significant correlation R2 Combining double low line 0.89 and RMSE of 2.06 °C using aggregated Landsat-8 TIR at 100 m resolution. Similarly, Landsat-8 TIR at 100 m resolution was still improved to 30 m and used with aggregate UAV TIR at 5 m resolution with a significant correlation R2 Combining double low line 0.92 and RMSE of 1.38 °C. Variation has been proven to have a significant impact on the accuracy of the model used. This result is consistent with earlier studies that utilized NDBI as a downscaling factor in addition to NDVI and other spectral indices and achieved lower RMSE than techniques that simply used NDVI. As a result, it is suggested that the derived IHE map is suitable for analyzing industrial thermal environments at 1:10,000 50,000 scales, and may therefore be used to assess the environmental effect.