Gasification characteristics and kinetics of lipid-extracted Nannochloropsis gaditana
A thermal behavior study of lipid-extracted Nannochloropsis gaditana (LEA) was performed in a thermogravimetric analyzer. The study was performed by heating the sample under different heating rates (5, 10, and 15 °C/min) from room temperature to 1000 °C using N2 gas as the medium. This is crucial fo...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI
2022
|
Subjects: | |
Online Access: | http://eprints.utm.my/103879/1/AhmadIlyasRushdan2022_GasificationCharacteristicsandKineticsofLipid.pdf http://eprints.utm.my/103879/ http://dx.doi.org/10.3390/pr10081525 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Language: | English |
id |
my.utm.103879 |
---|---|
record_format |
eprints |
spelling |
my.utm.1038792023-12-04T06:12:08Z http://eprints.utm.my/103879/ Gasification characteristics and kinetics of lipid-extracted Nannochloropsis gaditana Mahamud, Siti Nur Atikah Wan Abdul Karim Ghani, Wan Azlina Yap, Taufiq Yun Hin Mahmoud, Omar El Shafay, Ahmed Shabana Abdou Rushdan, Ahmad Ilyas Harun, Razif Q Science (General) A thermal behavior study of lipid-extracted Nannochloropsis gaditana (LEA) was performed in a thermogravimetric analyzer. The study was performed by heating the sample under different heating rates (5, 10, and 15 °C/min) from room temperature to 1000 °C using N2 gas as the medium. This is crucial for thermal stability studies in a kinetic control regime. The following three stages of chemical decompositions were found: (1) moisture removal (2) devolatilization (3) fixed carbon decomposition; maximum decomposition was observed at the second stage. Activation energies of the LEA were studied using the Flynn–Wall–Ozawa model and Kissinger–Akahira–Sunose model. Main sample decomposition was observed from 100–700 °C during volatile matter evaporation. The thermal behavior study findings were used for the gasification of the sample with air to study the effect of varying reaction parameters on the compositions of the synthesis gas yield. Maximum H2 yield was found at 700 °C and 0.7 g, which were 51.2 mol% and 50.6 mol%, respectively. From the study, it was found that LEA is suitable to be used as feedstock in gasification for synthesis gas production. MDPI 2022-08 Article PeerReviewed application/pdf en http://eprints.utm.my/103879/1/AhmadIlyasRushdan2022_GasificationCharacteristicsandKineticsofLipid.pdf Mahamud, Siti Nur Atikah and Wan Abdul Karim Ghani, Wan Azlina and Yap, Taufiq Yun Hin and Mahmoud, Omar and El Shafay, Ahmed Shabana Abdou and Rushdan, Ahmad Ilyas and Harun, Razif (2022) Gasification characteristics and kinetics of lipid-extracted Nannochloropsis gaditana. Processes, 10 (8). pp. 1-13. ISSN 2227-9717 http://dx.doi.org/10.3390/pr10081525 DOI:10.3390/pr10081525 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
Q Science (General) |
spellingShingle |
Q Science (General) Mahamud, Siti Nur Atikah Wan Abdul Karim Ghani, Wan Azlina Yap, Taufiq Yun Hin Mahmoud, Omar El Shafay, Ahmed Shabana Abdou Rushdan, Ahmad Ilyas Harun, Razif Gasification characteristics and kinetics of lipid-extracted Nannochloropsis gaditana |
description |
A thermal behavior study of lipid-extracted Nannochloropsis gaditana (LEA) was performed in a thermogravimetric analyzer. The study was performed by heating the sample under different heating rates (5, 10, and 15 °C/min) from room temperature to 1000 °C using N2 gas as the medium. This is crucial for thermal stability studies in a kinetic control regime. The following three stages of chemical decompositions were found: (1) moisture removal (2) devolatilization (3) fixed carbon decomposition; maximum decomposition was observed at the second stage. Activation energies of the LEA were studied using the Flynn–Wall–Ozawa model and Kissinger–Akahira–Sunose model. Main sample decomposition was observed from 100–700 °C during volatile matter evaporation. The thermal behavior study findings were used for the gasification of the sample with air to study the effect of varying reaction parameters on the compositions of the synthesis gas yield. Maximum H2 yield was found at 700 °C and 0.7 g, which were 51.2 mol% and 50.6 mol%, respectively. From the study, it was found that LEA is suitable to be used as feedstock in gasification for synthesis gas production. |
format |
Article |
author |
Mahamud, Siti Nur Atikah Wan Abdul Karim Ghani, Wan Azlina Yap, Taufiq Yun Hin Mahmoud, Omar El Shafay, Ahmed Shabana Abdou Rushdan, Ahmad Ilyas Harun, Razif |
author_facet |
Mahamud, Siti Nur Atikah Wan Abdul Karim Ghani, Wan Azlina Yap, Taufiq Yun Hin Mahmoud, Omar El Shafay, Ahmed Shabana Abdou Rushdan, Ahmad Ilyas Harun, Razif |
author_sort |
Mahamud, Siti Nur Atikah |
title |
Gasification characteristics and kinetics of lipid-extracted Nannochloropsis gaditana |
title_short |
Gasification characteristics and kinetics of lipid-extracted Nannochloropsis gaditana |
title_full |
Gasification characteristics and kinetics of lipid-extracted Nannochloropsis gaditana |
title_fullStr |
Gasification characteristics and kinetics of lipid-extracted Nannochloropsis gaditana |
title_full_unstemmed |
Gasification characteristics and kinetics of lipid-extracted Nannochloropsis gaditana |
title_sort |
gasification characteristics and kinetics of lipid-extracted nannochloropsis gaditana |
publisher |
MDPI |
publishDate |
2022 |
url |
http://eprints.utm.my/103879/1/AhmadIlyasRushdan2022_GasificationCharacteristicsandKineticsofLipid.pdf http://eprints.utm.my/103879/ http://dx.doi.org/10.3390/pr10081525 |
_version_ |
1784511514875527168 |