Feature extraction of white blood cells using CMYK-moment localization and deep learning in acute myeloid leukemia blood smear microscopic images

Artificial intelligence has revolutionized medical diagnosis, particularly for cancers. Acute myeloid leukemia (AML) diagnosis is a tedious protocol that is prone to human and machine errors. In several instances, it is difficult to make an accurate final decision even after careful examination by a...

Full description

Saved in:
Bibliographic Details
Main Authors: M. Elhassan, Tusneem Ahmed, Mohd. Rahim, Mohd. Shafry, Tan, Tian Swee, Mohd. Hashim, Siti Zaiton, Mahmoud Aljurf, Mahmoud Aljurf
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:http://eprints.utm.my/104360/1/MohdShafry2022_FeatureExtractionofWhiteBloodCells.pdf
http://eprints.utm.my/104360/
http://dx.doi.org/10.1109/ACCESS.2022.3149637
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.104360
record_format eprints
spelling my.utm.1043602024-02-04T09:34:09Z http://eprints.utm.my/104360/ Feature extraction of white blood cells using CMYK-moment localization and deep learning in acute myeloid leukemia blood smear microscopic images M. Elhassan, Tusneem Ahmed Mohd. Rahim, Mohd. Shafry Tan, Tian Swee Mohd. Hashim, Siti Zaiton Mahmoud Aljurf, Mahmoud Aljurf QA75 Electronic computers. Computer science Artificial intelligence has revolutionized medical diagnosis, particularly for cancers. Acute myeloid leukemia (AML) diagnosis is a tedious protocol that is prone to human and machine errors. In several instances, it is difficult to make an accurate final decision even after careful examination by an experienced pathologist. However, computer-Aided diagnosis (CAD) can help reduce the errors and time associated with AML diagnosis. White Blood Cells (WBC) detection is a critical step in AML diagnosis, and deep learning is considered a state-of-The-Art approach for WBC detection. However, the accuracy of WBC detection is strongly associated with the quality of the extracted features used in training the pixel-wise classification models. CAD depends on studying the different patterns of changes associated with WBC counts and features. In this study, a new hybrid feature extraction method was developed using image processing and deep learning methods. The proposed method consists of two steps: 1) a region of interest (ROI) is extracted using the CMYK-moment localization method and 2) deep learning-based features are extracted using a CNN-based feature fusion method. Several classification algorithms are used to evaluate the significance of the extracted features. The proposed feature extraction method was evaluated using an external dataset and benchmarked against other feature extraction methods. The proposed method achieved excellent performance, generalization, and stability using all the classifiers, with overall classification accuracies of 97.57% and 96.41% using the primary and secondary datasets, respectively. This method has opened a new alternative to improve the detection of WBCs, which could lead to a better diagnosis of AML. Institute of Electrical and Electronics Engineers Inc. 2022 Article PeerReviewed application/pdf en http://eprints.utm.my/104360/1/MohdShafry2022_FeatureExtractionofWhiteBloodCells.pdf M. Elhassan, Tusneem Ahmed and Mohd. Rahim, Mohd. Shafry and Tan, Tian Swee and Mohd. Hashim, Siti Zaiton and Mahmoud Aljurf, Mahmoud Aljurf (2022) Feature extraction of white blood cells using CMYK-moment localization and deep learning in acute myeloid leukemia blood smear microscopic images. IEEE Access, 10 (NA). pp. 16577-16591. ISSN 2169-3536 http://dx.doi.org/10.1109/ACCESS.2022.3149637 DOI : 10.1109/ACCESS.2022.3149637
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic QA75 Electronic computers. Computer science
spellingShingle QA75 Electronic computers. Computer science
M. Elhassan, Tusneem Ahmed
Mohd. Rahim, Mohd. Shafry
Tan, Tian Swee
Mohd. Hashim, Siti Zaiton
Mahmoud Aljurf, Mahmoud Aljurf
Feature extraction of white blood cells using CMYK-moment localization and deep learning in acute myeloid leukemia blood smear microscopic images
description Artificial intelligence has revolutionized medical diagnosis, particularly for cancers. Acute myeloid leukemia (AML) diagnosis is a tedious protocol that is prone to human and machine errors. In several instances, it is difficult to make an accurate final decision even after careful examination by an experienced pathologist. However, computer-Aided diagnosis (CAD) can help reduce the errors and time associated with AML diagnosis. White Blood Cells (WBC) detection is a critical step in AML diagnosis, and deep learning is considered a state-of-The-Art approach for WBC detection. However, the accuracy of WBC detection is strongly associated with the quality of the extracted features used in training the pixel-wise classification models. CAD depends on studying the different patterns of changes associated with WBC counts and features. In this study, a new hybrid feature extraction method was developed using image processing and deep learning methods. The proposed method consists of two steps: 1) a region of interest (ROI) is extracted using the CMYK-moment localization method and 2) deep learning-based features are extracted using a CNN-based feature fusion method. Several classification algorithms are used to evaluate the significance of the extracted features. The proposed feature extraction method was evaluated using an external dataset and benchmarked against other feature extraction methods. The proposed method achieved excellent performance, generalization, and stability using all the classifiers, with overall classification accuracies of 97.57% and 96.41% using the primary and secondary datasets, respectively. This method has opened a new alternative to improve the detection of WBCs, which could lead to a better diagnosis of AML.
format Article
author M. Elhassan, Tusneem Ahmed
Mohd. Rahim, Mohd. Shafry
Tan, Tian Swee
Mohd. Hashim, Siti Zaiton
Mahmoud Aljurf, Mahmoud Aljurf
author_facet M. Elhassan, Tusneem Ahmed
Mohd. Rahim, Mohd. Shafry
Tan, Tian Swee
Mohd. Hashim, Siti Zaiton
Mahmoud Aljurf, Mahmoud Aljurf
author_sort M. Elhassan, Tusneem Ahmed
title Feature extraction of white blood cells using CMYK-moment localization and deep learning in acute myeloid leukemia blood smear microscopic images
title_short Feature extraction of white blood cells using CMYK-moment localization and deep learning in acute myeloid leukemia blood smear microscopic images
title_full Feature extraction of white blood cells using CMYK-moment localization and deep learning in acute myeloid leukemia blood smear microscopic images
title_fullStr Feature extraction of white blood cells using CMYK-moment localization and deep learning in acute myeloid leukemia blood smear microscopic images
title_full_unstemmed Feature extraction of white blood cells using CMYK-moment localization and deep learning in acute myeloid leukemia blood smear microscopic images
title_sort feature extraction of white blood cells using cmyk-moment localization and deep learning in acute myeloid leukemia blood smear microscopic images
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2022
url http://eprints.utm.my/104360/1/MohdShafry2022_FeatureExtractionofWhiteBloodCells.pdf
http://eprints.utm.my/104360/
http://dx.doi.org/10.1109/ACCESS.2022.3149637
_version_ 1792147698783092736