Expert system to implement STEP-NC data interface model on CNC machine.
One of the issues in manufacturing is implementing the standard for the exchange of product data-numerical control (STEP-NC) data interface model on computer numeric control (CNC) machines. The most often used STEP-NC programming techniques for this implementation are indirect, interpreted, and adap...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
Springer Science and Business Media Deutschland GmbH
2023
|
Subjects: | |
Online Access: | http://eprints.utm.my/105424/ http://dx.doi.org/10.1007/s00170-023-12582-9 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Summary: | One of the issues in manufacturing is implementing the standard for the exchange of product data-numerical control (STEP-NC) data interface model on computer numeric control (CNC) machines. The most often used STEP-NC programming techniques for this implementation are indirect, interpreted, and adaptive. Because of the ease of integration with existing control systems, the performance of the interpreted method was noticeably superior to that of the indirect and adaptive approaches. This concept has resulted in the creation of several tools, systems, designs, algorithms, and methods. In this study, a new STEP-NC implementation system has been created, in which the interpretation has been done using entity-plus string-based (double layer) for more precise data extractions, the tool paths system can create facing, pocket, drill, bore, ream, countersink, side, slot, and contour operations, the output file generation system can create output as per interpreted and hybrid programming approaches, and the execution system can handle multi-threaded operations. To enhance the overall interpretation system and automate implementation by reducing manual intervention, an expert system has also been incorporated. The STEP-NC part 21 examples 1 and 2 part programs were manufactured on the CNC prototype to validate the technology. The creation of the system, the design of the algorithm, the experimental verification, the conclusion, and the future suggestions are described in the paper’s content. |
---|