Neutrosophic bicubic Bezier surface approximation model for uncertainty data

Surfaces and their descriptions are significant in design, physical science, geology, and other natural phenomena. This study introduces a neutrosophic Bezier surface approximation with a four-by-four control net for the bicubic situation. The neutrosophic notion defines the neutrosophic control net...

Full description

Saved in:
Bibliographic Details
Main Authors: Rosli, Siti Nur Idara, Zulkifly, Mohammad Izat Emir
Format: Article
Language:English
Published: Penerbit UTM Press 2023
Subjects:
Online Access:http://eprints.utm.my/105448/1/MohammadIzatEmir2023_NeutrosophicBicubicBezierSurfaceApproximation.pdf
http://eprints.utm.my/105448/
http://dx.doi.org/10.11113/matematika.v39.n3.1502
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.105448
record_format eprints
spelling my.utm.1054482024-04-30T07:19:54Z http://eprints.utm.my/105448/ Neutrosophic bicubic Bezier surface approximation model for uncertainty data Rosli, Siti Nur Idara Zulkifly, Mohammad Izat Emir QA Mathematics Surfaces and their descriptions are significant in design, physical science, geology, and other natural phenomena. This study introduces a neutrosophic Bezier surface approximation with a four-by-four control net for the bicubic situation. The neutrosophic notion defines the neutrosophic control net relation. The control net is mixed with the Bernstein basis function to generate a surface blending function and a neutrosophic bicubic Bezier surface. Finally, the neutrosophic bicubic Bezier surface is shown using an approximation approach and data points having neutrosophic properties. Penerbit UTM Press 2023-12 Article PeerReviewed application/pdf en http://eprints.utm.my/105448/1/MohammadIzatEmir2023_NeutrosophicBicubicBezierSurfaceApproximation.pdf Rosli, Siti Nur Idara and Zulkifly, Mohammad Izat Emir (2023) Neutrosophic bicubic Bezier surface approximation model for uncertainty data. MATEMATIKA, 39 (3). pp. 281-291. ISSN 0127-8274 http://dx.doi.org/10.11113/matematika.v39.n3.1502 DOI:10.11113/matematika.v39.n3.1502
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic QA Mathematics
spellingShingle QA Mathematics
Rosli, Siti Nur Idara
Zulkifly, Mohammad Izat Emir
Neutrosophic bicubic Bezier surface approximation model for uncertainty data
description Surfaces and their descriptions are significant in design, physical science, geology, and other natural phenomena. This study introduces a neutrosophic Bezier surface approximation with a four-by-four control net for the bicubic situation. The neutrosophic notion defines the neutrosophic control net relation. The control net is mixed with the Bernstein basis function to generate a surface blending function and a neutrosophic bicubic Bezier surface. Finally, the neutrosophic bicubic Bezier surface is shown using an approximation approach and data points having neutrosophic properties.
format Article
author Rosli, Siti Nur Idara
Zulkifly, Mohammad Izat Emir
author_facet Rosli, Siti Nur Idara
Zulkifly, Mohammad Izat Emir
author_sort Rosli, Siti Nur Idara
title Neutrosophic bicubic Bezier surface approximation model for uncertainty data
title_short Neutrosophic bicubic Bezier surface approximation model for uncertainty data
title_full Neutrosophic bicubic Bezier surface approximation model for uncertainty data
title_fullStr Neutrosophic bicubic Bezier surface approximation model for uncertainty data
title_full_unstemmed Neutrosophic bicubic Bezier surface approximation model for uncertainty data
title_sort neutrosophic bicubic bezier surface approximation model for uncertainty data
publisher Penerbit UTM Press
publishDate 2023
url http://eprints.utm.my/105448/1/MohammadIzatEmir2023_NeutrosophicBicubicBezierSurfaceApproximation.pdf
http://eprints.utm.my/105448/
http://dx.doi.org/10.11113/matematika.v39.n3.1502
_version_ 1797906027823235072