UTMInDualSymFi: A dual-band Wi-Fi dataset for fingerprinting positioning in symmetric indoor environments
Recent studies on indoor positioning using Wi-Fi fingerprinting are motivated by the ubiquity of Wi-Fi networks and their promising positioning accuracy. Machine learning algorithms are commonly leveraged in indoor positioning works. The performance of machine learning based solutions are dependent...
Saved in:
Main Authors: | , , , , |
---|---|
格式: | Article |
語言: | English |
出版: |
MDPI
2023
|
主題: | |
在線閱讀: | http://eprints.utm.my/106493/1/OmarAbdulAziz2023_UTMInDualSymFiADualBandWiFi.pdf http://eprints.utm.my/106493/ http://dx.doi.org/10.3390/data8010014 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Universiti Teknologi Malaysia |
語言: | English |
總結: | Recent studies on indoor positioning using Wi-Fi fingerprinting are motivated by the ubiquity of Wi-Fi networks and their promising positioning accuracy. Machine learning algorithms are commonly leveraged in indoor positioning works. The performance of machine learning based solutions are dependent on the availability, volume, quality, and diversity of related data. Several public datasets have been published in order to foster advancements in Wi-Fi based fingerprinting indoor positioning solutions. These datasets, however, lack dual-band Wi-Fi data within symmetric indoor environments. To fill this gap, this research work presents the UTMInDualSymFi dataset, as a source of dual-band Wi-Fi data, acquired within multiple residential buildings with symmetric deployment of access points. UTMInDualSymFi comprises the recorded dual-band raw data, training and test datasets, radio maps and supporting metadata. Additionally, a statistical radio map construction algorithm is presented. Benchmark performance was evaluated by implementing a machine-learning-based positioning algorithm on the dataset. In general, higher accuracy was observed, on the 5 GHz data scenarios. This systematically collected dataset enables the development and validation of future comprehensive solutions, inclusive of novel preprocessing, radio map construction, and positioning algorithms. Dataset: https://doi.org/10.5281/zenodo.7260097 Dataset License: Creative Commons Attribution 4.0 International. |
---|