Dynamic quantum-inspired particle swarm optimization as feature and parameter optimizer for evolving spiking neural networks

This paper proposes a new structure for Quantum-inspired Particle Swarm Optimization (QiPSO) to enhance feature and parameter optimization of Evolving Spiking Neural Networks (ESNN). The new Dynamic Quantum-inspired Particle Swarm Optimization (DQiPSO) will be integrated within ESNN where features a...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdull Hamed, Haza Nuzly, Kasabov, Nikola, Shamsuddin, Siti Mariyam
Format: Article
Published: International Association of Computer Science and Information Technology Press (IACSIT Press) 2012
Subjects:
Online Access:http://eprints.utm.my/id/eprint/31762/
http://dx.doi.org/10.7763/IJMO.2012.V2.108
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia