Bieberbach groups with finite point groups

A Bieberbach group is a torsion free crystallographic group. It is an extension of a lattice group, which is a maximal normal free abelian group of �nite rank, by a �nite point group. The main objective of this research is to compute the nonabelian tensor square of Bieberbach groups with a �nite non...

Full description

Saved in:
Bibliographic Details
Main Author: Mohd. Idrus, Nor'ashiqin
Format: Thesis
Language:English
Published: 2011
Subjects:
Online Access:http://eprints.utm.my/id/eprint/37905/1/NorashiqinMohdIdrusPFS2011.pdf
http://eprints.utm.my/id/eprint/37905/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.37905
record_format eprints
spelling my.utm.379052018-05-27T08:16:34Z http://eprints.utm.my/id/eprint/37905/ Bieberbach groups with finite point groups Mohd. Idrus, Nor'ashiqin Q Science (General) A Bieberbach group is a torsion free crystallographic group. It is an extension of a lattice group, which is a maximal normal free abelian group of �nite rank, by a �nite point group. The main objective of this research is to compute the nonabelian tensor square of Bieberbach groups with a �nite nonabelian point group, in particular the dihedral group of order eight. Bieberbach groups in the Crystallographic AlgoRithms And Tables (CARAT) homepage were �rst explored and examples of the nonabelian tensor square of the groups were then computed by using the Groups, Algrorithms, Programming (GAP) software system. The exploration of the groups and the examples computed led to the exact characterization of the Bieberbach groups with trivial center. The centerless Bieberbach groups are interesting since they do not arise in the general construction of a Bieberbach group for a given point group. This construction has been shown to depend on the presentation of the point group. In addition, the experimental data of the computation of the nonabelian tensor square gives no insight into the structure of the tensor square such as its generators and relations. With the method developed for polycyclic groups, the nonabelian tensor square of one of the centerless Bieberbach groups with dihedral point group of order eight were manually computed. It has been demonstrated that the use of GAP helps to simplify the manual calculation. Furthermore, the computation of some homological functors of all 73 centerless Bieberbach groups with dihedral point group of order eight and of dimension at most six were explored. Lastly, some homological functors for Bieberbach groups with some other nonabelian point groups were also computed with the help of GAP. 2011-04 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/37905/1/NorashiqinMohdIdrusPFS2011.pdf Mohd. Idrus, Nor'ashiqin (2011) Bieberbach groups with finite point groups. PhD thesis, Universiti Teknologi Malaysia, Faculty of Science.
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic Q Science (General)
spellingShingle Q Science (General)
Mohd. Idrus, Nor'ashiqin
Bieberbach groups with finite point groups
description A Bieberbach group is a torsion free crystallographic group. It is an extension of a lattice group, which is a maximal normal free abelian group of �nite rank, by a �nite point group. The main objective of this research is to compute the nonabelian tensor square of Bieberbach groups with a �nite nonabelian point group, in particular the dihedral group of order eight. Bieberbach groups in the Crystallographic AlgoRithms And Tables (CARAT) homepage were �rst explored and examples of the nonabelian tensor square of the groups were then computed by using the Groups, Algrorithms, Programming (GAP) software system. The exploration of the groups and the examples computed led to the exact characterization of the Bieberbach groups with trivial center. The centerless Bieberbach groups are interesting since they do not arise in the general construction of a Bieberbach group for a given point group. This construction has been shown to depend on the presentation of the point group. In addition, the experimental data of the computation of the nonabelian tensor square gives no insight into the structure of the tensor square such as its generators and relations. With the method developed for polycyclic groups, the nonabelian tensor square of one of the centerless Bieberbach groups with dihedral point group of order eight were manually computed. It has been demonstrated that the use of GAP helps to simplify the manual calculation. Furthermore, the computation of some homological functors of all 73 centerless Bieberbach groups with dihedral point group of order eight and of dimension at most six were explored. Lastly, some homological functors for Bieberbach groups with some other nonabelian point groups were also computed with the help of GAP.
format Thesis
author Mohd. Idrus, Nor'ashiqin
author_facet Mohd. Idrus, Nor'ashiqin
author_sort Mohd. Idrus, Nor'ashiqin
title Bieberbach groups with finite point groups
title_short Bieberbach groups with finite point groups
title_full Bieberbach groups with finite point groups
title_fullStr Bieberbach groups with finite point groups
title_full_unstemmed Bieberbach groups with finite point groups
title_sort bieberbach groups with finite point groups
publishDate 2011
url http://eprints.utm.my/id/eprint/37905/1/NorashiqinMohdIdrusPFS2011.pdf
http://eprints.utm.my/id/eprint/37905/
_version_ 1643650185147973632