An improved deffect classification algorithm for six printing deffects and its implementation on real printed circuit board images

Because decisions made by human inspectors often involve subjective judg-ment, in addition to being intensive and therefore costly, an automated approach for printed circuit board (PCB) inspection is preferred to eliminate subjective discrimination and thus provide fast, quantitative, and dimensiona...

Full description

Saved in:
Bibliographic Details
Main Authors: Ibrahim, Ismail, Khalil, Kamal, Ibrahim, Zuwairie, Mohd. Mokji, Musa, Syed Abu Bakar, Syed Abdul Rahman, Mokhtar, Norrima, Wan Ahmad, Wan Khairunizam
Format: Article
Published: ICIC International 2012
Subjects:
Online Access:http://eprints.utm.my/id/eprint/46591/
http://www.ijicic.org/ijicic-10-11079.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Description
Summary:Because decisions made by human inspectors often involve subjective judg-ment, in addition to being intensive and therefore costly, an automated approach for printed circuit board (PCB) inspection is preferred to eliminate subjective discrimination and thus provide fast, quantitative, and dimensional assessments. In this study, defect classification is essential to the identification of defect sources. Therefore, an algorithm for PCB defect classification is presented that consists of well-known conventional op-erations, including image difference, image subtraction, image addition, counted image comparator, flood-fill, and labeling for the classification of six different defects, namely, missing hole, pinhole, underetch, short-circuit, open-circuit, and mousebite. The de-fect classification algorithm is improved by incorporating proper image registration and thresholding techniques to solve the alignment and uneven illumination problem. The improved PCB defect classification algorithm has been applied to real PCB images to successfully classify all of the defects.