The exterior squares of some crystallographic groups

A crystallographic group is a discrete subgroup G of the set of isometries of Euclidean space ,nE where the quotient space nGE is compact. A specific type of crystallographic groups is called Bieberbach groups. A Bieberbach group is defined to be a torsion free crystallographic group. In this paper,...

Full description

Saved in:
Bibliographic Details
Main Authors: Mat Hassima, Hazzirah Izzati, Sarmin, Nor Haniza, Mohd. Ali, Nor Muhainiah, Masri, Rohaidah, Mohd. Idrus, Nor’ashiqin
Format: Article
Language:English
Published: Penerbit UTM 2013
Subjects:
Online Access:http://eprints.utm.my/id/eprint/50195/1/HazzirahIzzatiMat2013_Theexteriorsquaresofsome.pdf
http://eprints.utm.my/id/eprint/50195/
https://dx.doi.org/10.11113/jt.v62.1882
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.50195
record_format eprints
spelling my.utm.501952018-10-14T08:33:38Z http://eprints.utm.my/id/eprint/50195/ The exterior squares of some crystallographic groups Mat Hassima, Hazzirah Izzati Sarmin, Nor Haniza Mohd. Ali, Nor Muhainiah Masri, Rohaidah Mohd. Idrus, Nor’ashiqin QA Mathematics A crystallographic group is a discrete subgroup G of the set of isometries of Euclidean space ,nE where the quotient space nGE is compact. A specific type of crystallographic groups is called Bieberbach groups. A Bieberbach group is defined to be a torsion free crystallographic group. In this paper, the exterior squares of some Bieberbach groups with abelian point groups are computed. The exterior square of a group is the factor group of the nonabelian tensor square with the central subgroup of the group Penerbit UTM 2013 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/50195/1/HazzirahIzzatiMat2013_Theexteriorsquaresofsome.pdf Mat Hassima, Hazzirah Izzati and Sarmin, Nor Haniza and Mohd. Ali, Nor Muhainiah and Masri, Rohaidah and Mohd. Idrus, Nor’ashiqin (2013) The exterior squares of some crystallographic groups. Jurnal Teknologi (Sciences and Engineering), 62 (3). pp. 7-13. ISSN 0127-9696 https://dx.doi.org/10.11113/jt.v62.1882 DOI: 10.11113/jt.v62.1882
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic QA Mathematics
spellingShingle QA Mathematics
Mat Hassima, Hazzirah Izzati
Sarmin, Nor Haniza
Mohd. Ali, Nor Muhainiah
Masri, Rohaidah
Mohd. Idrus, Nor’ashiqin
The exterior squares of some crystallographic groups
description A crystallographic group is a discrete subgroup G of the set of isometries of Euclidean space ,nE where the quotient space nGE is compact. A specific type of crystallographic groups is called Bieberbach groups. A Bieberbach group is defined to be a torsion free crystallographic group. In this paper, the exterior squares of some Bieberbach groups with abelian point groups are computed. The exterior square of a group is the factor group of the nonabelian tensor square with the central subgroup of the group
format Article
author Mat Hassima, Hazzirah Izzati
Sarmin, Nor Haniza
Mohd. Ali, Nor Muhainiah
Masri, Rohaidah
Mohd. Idrus, Nor’ashiqin
author_facet Mat Hassima, Hazzirah Izzati
Sarmin, Nor Haniza
Mohd. Ali, Nor Muhainiah
Masri, Rohaidah
Mohd. Idrus, Nor’ashiqin
author_sort Mat Hassima, Hazzirah Izzati
title The exterior squares of some crystallographic groups
title_short The exterior squares of some crystallographic groups
title_full The exterior squares of some crystallographic groups
title_fullStr The exterior squares of some crystallographic groups
title_full_unstemmed The exterior squares of some crystallographic groups
title_sort exterior squares of some crystallographic groups
publisher Penerbit UTM
publishDate 2013
url http://eprints.utm.my/id/eprint/50195/1/HazzirahIzzatiMat2013_Theexteriorsquaresofsome.pdf
http://eprints.utm.my/id/eprint/50195/
https://dx.doi.org/10.11113/jt.v62.1882
_version_ 1643652788977139712