The exterior squares of some crystallographic groups
A crystallographic group is a discrete subgroup G of the set of isometries of Euclidean space ,nE where the quotient space nGE is compact. A specific type of crystallographic groups is called Bieberbach groups. A Bieberbach group is defined to be a torsion free crystallographic group. In this paper,...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit UTM
2013
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/50195/1/HazzirahIzzatiMat2013_Theexteriorsquaresofsome.pdf http://eprints.utm.my/id/eprint/50195/ https://dx.doi.org/10.11113/jt.v62.1882 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Language: | English |
id |
my.utm.50195 |
---|---|
record_format |
eprints |
spelling |
my.utm.501952018-10-14T08:33:38Z http://eprints.utm.my/id/eprint/50195/ The exterior squares of some crystallographic groups Mat Hassima, Hazzirah Izzati Sarmin, Nor Haniza Mohd. Ali, Nor Muhainiah Masri, Rohaidah Mohd. Idrus, Nor’ashiqin QA Mathematics A crystallographic group is a discrete subgroup G of the set of isometries of Euclidean space ,nE where the quotient space nGE is compact. A specific type of crystallographic groups is called Bieberbach groups. A Bieberbach group is defined to be a torsion free crystallographic group. In this paper, the exterior squares of some Bieberbach groups with abelian point groups are computed. The exterior square of a group is the factor group of the nonabelian tensor square with the central subgroup of the group Penerbit UTM 2013 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/50195/1/HazzirahIzzatiMat2013_Theexteriorsquaresofsome.pdf Mat Hassima, Hazzirah Izzati and Sarmin, Nor Haniza and Mohd. Ali, Nor Muhainiah and Masri, Rohaidah and Mohd. Idrus, Nor’ashiqin (2013) The exterior squares of some crystallographic groups. Jurnal Teknologi (Sciences and Engineering), 62 (3). pp. 7-13. ISSN 0127-9696 https://dx.doi.org/10.11113/jt.v62.1882 DOI: 10.11113/jt.v62.1882 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Mat Hassima, Hazzirah Izzati Sarmin, Nor Haniza Mohd. Ali, Nor Muhainiah Masri, Rohaidah Mohd. Idrus, Nor’ashiqin The exterior squares of some crystallographic groups |
description |
A crystallographic group is a discrete subgroup G of the set of isometries of Euclidean space ,nE where the quotient space nGE is compact. A specific type of crystallographic groups is called Bieberbach groups. A Bieberbach group is defined to be a torsion free crystallographic group. In this paper, the exterior squares of some Bieberbach groups with abelian point groups are computed. The exterior square of a group is the factor group of the nonabelian tensor square with the central subgroup of the group |
format |
Article |
author |
Mat Hassima, Hazzirah Izzati Sarmin, Nor Haniza Mohd. Ali, Nor Muhainiah Masri, Rohaidah Mohd. Idrus, Nor’ashiqin |
author_facet |
Mat Hassima, Hazzirah Izzati Sarmin, Nor Haniza Mohd. Ali, Nor Muhainiah Masri, Rohaidah Mohd. Idrus, Nor’ashiqin |
author_sort |
Mat Hassima, Hazzirah Izzati |
title |
The exterior squares of some crystallographic groups |
title_short |
The exterior squares of some crystallographic groups |
title_full |
The exterior squares of some crystallographic groups |
title_fullStr |
The exterior squares of some crystallographic groups |
title_full_unstemmed |
The exterior squares of some crystallographic groups |
title_sort |
exterior squares of some crystallographic groups |
publisher |
Penerbit UTM |
publishDate |
2013 |
url |
http://eprints.utm.my/id/eprint/50195/1/HazzirahIzzatiMat2013_Theexteriorsquaresofsome.pdf http://eprints.utm.my/id/eprint/50195/ https://dx.doi.org/10.11113/jt.v62.1882 |
_version_ |
1643652788977139712 |