The schur multipliers of certain bieberbach groups with abelian point groups
The Schur multiplier of a group G is the kernel of a homomorphism κ′ from the exterior square of the group, G ∧ G to its commutator subgroup, G′ defined by κ′(g ∧ h) = [g,h] for g,h ∈ G. In this research, the Schur multipliers are computed for certain Bieberbach groups with abelian point groups. A B...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference or Workshop Item |
Published: |
2013
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/51370/ http://dx.doi.org/10.1063/1.4801248 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Summary: | The Schur multiplier of a group G is the kernel of a homomorphism κ′ from the exterior square of the group, G ∧ G to its commutator subgroup, G′ defined by κ′(g ∧ h) = [g,h] for g,h ∈ G. In this research, the Schur multipliers are computed for certain Bieberbach groups with abelian point groups. A Bieberbach group is a torsion free crystallographic group. It is an extension of a free abelian group L of finite rank by a finite group P. Here, L is known as the lattice group while P is the point group of the Bieberbach group. |
---|