Using bees hill flux balance analysis (BHFBA) for in silico microbial strain optimization
Microbial strains can be manipulated to improve product yield and improve growth characteristics. Optimization algorithms are developed to identify the effects of gene knockout on the results. However, this process is often faced the problem of being trapped in local minima and slow convergence due...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference or Workshop Item |
Published: |
2013
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/51385/ https://doi.org/10.1007/978-3-642-36546-1_39 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
id |
my.utm.51385 |
---|---|
record_format |
eprints |
spelling |
my.utm.513852017-09-18T01:59:46Z http://eprints.utm.my/id/eprint/51385/ Using bees hill flux balance analysis (BHFBA) for in silico microbial strain optimization Yee, Wen Choon Mohamad, Mohd. Saberi Deris, Safaai Md. Illias, Rosli Lian, En Chai Chuii, Khim Chong QA Mathematics Microbial strains can be manipulated to improve product yield and improve growth characteristics. Optimization algorithms are developed to identify the effects of gene knockout on the results. However, this process is often faced the problem of being trapped in local minima and slow convergence due to repetitive iterations of algorithm. In this paper, we proposed Bees Hill Flux Balance Analysis (BHFBA) which is a hybrid of Bees Algorithm, Hill Climbing Algorithm and Flux Balance Analysis to solve the problems and improve the performance in predicting optimal sets of gene deletion for maximizing the growth rate and production yield of desired metabolite. Escherichia coli is the model organism in this paper. The list of knockout genes, growth rate and production yield after the deletion are the results from the experiments. BHFBA performed better in term of computational time, stability and production yield. 2013 Conference or Workshop Item PeerReviewed Yee, Wen Choon and Mohamad, Mohd. Saberi and Deris, Safaai and Md. Illias, Rosli and Lian, En Chai and Chuii, Khim Chong (2013) Using bees hill flux balance analysis (BHFBA) for in silico microbial strain optimization. In: Lecture Notes In Computer Science (Including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics). https://doi.org/10.1007/978-3-642-36546-1_39 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Yee, Wen Choon Mohamad, Mohd. Saberi Deris, Safaai Md. Illias, Rosli Lian, En Chai Chuii, Khim Chong Using bees hill flux balance analysis (BHFBA) for in silico microbial strain optimization |
description |
Microbial strains can be manipulated to improve product yield and improve growth characteristics. Optimization algorithms are developed to identify the effects of gene knockout on the results. However, this process is often faced the problem of being trapped in local minima and slow convergence due to repetitive iterations of algorithm. In this paper, we proposed Bees Hill Flux Balance Analysis (BHFBA) which is a hybrid of Bees Algorithm, Hill Climbing Algorithm and Flux Balance Analysis to solve the problems and improve the performance in predicting optimal sets of gene deletion for maximizing the growth rate and production yield of desired metabolite. Escherichia coli is the model organism in this paper. The list of knockout genes, growth rate and production yield after the deletion are the results from the experiments. BHFBA performed better in term of computational time, stability and production yield. |
format |
Conference or Workshop Item |
author |
Yee, Wen Choon Mohamad, Mohd. Saberi Deris, Safaai Md. Illias, Rosli Lian, En Chai Chuii, Khim Chong |
author_facet |
Yee, Wen Choon Mohamad, Mohd. Saberi Deris, Safaai Md. Illias, Rosli Lian, En Chai Chuii, Khim Chong |
author_sort |
Yee, Wen Choon |
title |
Using bees hill flux balance analysis (BHFBA) for in silico microbial strain optimization |
title_short |
Using bees hill flux balance analysis (BHFBA) for in silico microbial strain optimization |
title_full |
Using bees hill flux balance analysis (BHFBA) for in silico microbial strain optimization |
title_fullStr |
Using bees hill flux balance analysis (BHFBA) for in silico microbial strain optimization |
title_full_unstemmed |
Using bees hill flux balance analysis (BHFBA) for in silico microbial strain optimization |
title_sort |
using bees hill flux balance analysis (bhfba) for in silico microbial strain optimization |
publishDate |
2013 |
url |
http://eprints.utm.my/id/eprint/51385/ https://doi.org/10.1007/978-3-642-36546-1_39 |
_version_ |
1643653024676052992 |