Boundary integral equation with the generalized Neumann kernel for computing green’s function for multiply connected regions

This research is about computing the Green’s function for both bounded and unbounded multiply connected regions by using the method of boundary integral equation. The Green’s function can be expressed in terms of an unknown function that satisfies a Dirichlet problem. The Dirichlet problem is then s...

Full description

Saved in:
Bibliographic Details
Main Author: Aspon, Siti Zulaiha
Format: Thesis
Language:English
Published: 2015
Subjects:
Online Access:http://eprints.utm.my/id/eprint/53533/25/SitiZulaihaAsponMFS2015.pdf
http://eprints.utm.my/id/eprint/53533/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:84118
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.53533
record_format eprints
spelling my.utm.535332020-07-19T07:29:45Z http://eprints.utm.my/id/eprint/53533/ Boundary integral equation with the generalized Neumann kernel for computing green’s function for multiply connected regions Aspon, Siti Zulaiha QA Mathematics This research is about computing the Green’s function for both bounded and unbounded multiply connected regions by using the method of boundary integral equation. The Green’s function can be expressed in terms of an unknown function that satisfies a Dirichlet problem. The Dirichlet problem is then solved using a uniquely solvable Fredholm integral equation on the boundary of the region. The kernel of this integral equation is the generalized Neumann kernel. The method for solving this integral equation is by using the Nystr?m method with trapezoidal rule to discretize it to a linear system. The linear system is then solved by the Gauss elimination method. Mathematica software and MATLAB software plots of Green’s functions for several test regions for connectivity not more than three are also presented. For bounded regions with connectivity more than three and regions with corners, the linear system is solved iteratively by using the generalized minimal residual method (GMRES) powered by fast multipole method. This method helps speed up matrix-vector product for solving large linear system and gives both fast and accurate results. MATLAB software plots of Green’s functions for several test regions are also presented. 2015-01 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/53533/25/SitiZulaihaAsponMFS2015.pdf Aspon, Siti Zulaiha (2015) Boundary integral equation with the generalized Neumann kernel for computing green’s function for multiply connected regions. Masters thesis, Universiti Teknologi Malaysia, Faculty of Science. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:84118
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic QA Mathematics
spellingShingle QA Mathematics
Aspon, Siti Zulaiha
Boundary integral equation with the generalized Neumann kernel for computing green’s function for multiply connected regions
description This research is about computing the Green’s function for both bounded and unbounded multiply connected regions by using the method of boundary integral equation. The Green’s function can be expressed in terms of an unknown function that satisfies a Dirichlet problem. The Dirichlet problem is then solved using a uniquely solvable Fredholm integral equation on the boundary of the region. The kernel of this integral equation is the generalized Neumann kernel. The method for solving this integral equation is by using the Nystr?m method with trapezoidal rule to discretize it to a linear system. The linear system is then solved by the Gauss elimination method. Mathematica software and MATLAB software plots of Green’s functions for several test regions for connectivity not more than three are also presented. For bounded regions with connectivity more than three and regions with corners, the linear system is solved iteratively by using the generalized minimal residual method (GMRES) powered by fast multipole method. This method helps speed up matrix-vector product for solving large linear system and gives both fast and accurate results. MATLAB software plots of Green’s functions for several test regions are also presented.
format Thesis
author Aspon, Siti Zulaiha
author_facet Aspon, Siti Zulaiha
author_sort Aspon, Siti Zulaiha
title Boundary integral equation with the generalized Neumann kernel for computing green’s function for multiply connected regions
title_short Boundary integral equation with the generalized Neumann kernel for computing green’s function for multiply connected regions
title_full Boundary integral equation with the generalized Neumann kernel for computing green’s function for multiply connected regions
title_fullStr Boundary integral equation with the generalized Neumann kernel for computing green’s function for multiply connected regions
title_full_unstemmed Boundary integral equation with the generalized Neumann kernel for computing green’s function for multiply connected regions
title_sort boundary integral equation with the generalized neumann kernel for computing green’s function for multiply connected regions
publishDate 2015
url http://eprints.utm.my/id/eprint/53533/25/SitiZulaihaAsponMFS2015.pdf
http://eprints.utm.my/id/eprint/53533/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:84118
_version_ 1674066176587595776