Modelling and reasoning of large scale fuzzy petri net using inference path and bidirectional methods

The state explosion problem has limited further research of Fuzzy Petri Net (FPN). With the rising scale of FPN, the algorithm complexity for related applications using FPN has also rapidly increased. To overcome this challenge, this research proposed three algorithms, which are transformation algor...

Full description

Saved in:
Bibliographic Details
Main Author: Zhou, Kaiqing
Format: Thesis
Language:English
Published: 2015
Subjects:
Online Access:http://eprints.utm.my/id/eprint/54824/1/ZhouKaiqingPFC2015.pdf
http://eprints.utm.my/id/eprint/54824/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:96108
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.54824
record_format eprints
spelling my.utm.548242020-11-08T06:54:40Z http://eprints.utm.my/id/eprint/54824/ Modelling and reasoning of large scale fuzzy petri net using inference path and bidirectional methods Zhou, Kaiqing QA75 Electronic computers. Computer science The state explosion problem has limited further research of Fuzzy Petri Net (FPN). With the rising scale of FPN, the algorithm complexity for related applications using FPN has also rapidly increased. To overcome this challenge, this research proposed three algorithms, which are transformation algorithm, decomposition algorithm and bidirectional reasoning algorithm to solve the state explosion problems of knowledge-based system (KBS) modelling and reasoning using FPN. Based on the goal of this research, the entire research is separated into two tasks, which are KBS modelling and reasoning using FPN. In modelling, a transformation algorithm has been proposed while in reasoning, decomposition and bidirectional reasoning algorithms have been proposed. In transformation, the algorithm is proposed to generate an equivalent large-scale FPN for the corresponding large-size KBS using a novel representation method of Fuzzy Production Rule (FPR). In decomposition, the algorithm is proposed to separate a large-scale FPN into a group of sub-FPNs by using a presented index function and incidence matrix. In bidirectional reasoning, the algorithm for optimal path is proposed to implement inference operations. Experimental results show that all proposed algorithms have successfully accomplished the requirements of each link of KBS modelling and reasoning using large-scale FPN. First, the proposed transformation algorithm owns ability to generate the corresponding FPN for the large-size KBS automatically. Second, the proposed decomposition owns ability to divide a large-scale FPN into a group of sub-FPNs based on the inner-reasoning-path. Lastly, the proposed bidirectional reasoning algorithm owns ability to implement inference for the goal output place in an optimal reasoning path by removal of irrelevant places and transitions. These results indicate that all proposed algorithms have ability to overcome the state explosion problem of FPN. 2015-10 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/54824/1/ZhouKaiqingPFC2015.pdf Zhou, Kaiqing (2015) Modelling and reasoning of large scale fuzzy petri net using inference path and bidirectional methods. PhD thesis, Universiti Teknologi Malaysia, Faculty of Computing. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:96108
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic QA75 Electronic computers. Computer science
spellingShingle QA75 Electronic computers. Computer science
Zhou, Kaiqing
Modelling and reasoning of large scale fuzzy petri net using inference path and bidirectional methods
description The state explosion problem has limited further research of Fuzzy Petri Net (FPN). With the rising scale of FPN, the algorithm complexity for related applications using FPN has also rapidly increased. To overcome this challenge, this research proposed three algorithms, which are transformation algorithm, decomposition algorithm and bidirectional reasoning algorithm to solve the state explosion problems of knowledge-based system (KBS) modelling and reasoning using FPN. Based on the goal of this research, the entire research is separated into two tasks, which are KBS modelling and reasoning using FPN. In modelling, a transformation algorithm has been proposed while in reasoning, decomposition and bidirectional reasoning algorithms have been proposed. In transformation, the algorithm is proposed to generate an equivalent large-scale FPN for the corresponding large-size KBS using a novel representation method of Fuzzy Production Rule (FPR). In decomposition, the algorithm is proposed to separate a large-scale FPN into a group of sub-FPNs by using a presented index function and incidence matrix. In bidirectional reasoning, the algorithm for optimal path is proposed to implement inference operations. Experimental results show that all proposed algorithms have successfully accomplished the requirements of each link of KBS modelling and reasoning using large-scale FPN. First, the proposed transformation algorithm owns ability to generate the corresponding FPN for the large-size KBS automatically. Second, the proposed decomposition owns ability to divide a large-scale FPN into a group of sub-FPNs based on the inner-reasoning-path. Lastly, the proposed bidirectional reasoning algorithm owns ability to implement inference for the goal output place in an optimal reasoning path by removal of irrelevant places and transitions. These results indicate that all proposed algorithms have ability to overcome the state explosion problem of FPN.
format Thesis
author Zhou, Kaiqing
author_facet Zhou, Kaiqing
author_sort Zhou, Kaiqing
title Modelling and reasoning of large scale fuzzy petri net using inference path and bidirectional methods
title_short Modelling and reasoning of large scale fuzzy petri net using inference path and bidirectional methods
title_full Modelling and reasoning of large scale fuzzy petri net using inference path and bidirectional methods
title_fullStr Modelling and reasoning of large scale fuzzy petri net using inference path and bidirectional methods
title_full_unstemmed Modelling and reasoning of large scale fuzzy petri net using inference path and bidirectional methods
title_sort modelling and reasoning of large scale fuzzy petri net using inference path and bidirectional methods
publishDate 2015
url http://eprints.utm.my/id/eprint/54824/1/ZhouKaiqingPFC2015.pdf
http://eprints.utm.my/id/eprint/54824/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:96108
_version_ 1684653432962547712