Feature selection using Rough-DPSO in anomaly intrusion detection

Most of the existing IDS use all the features in network packet to evaluate and look for known intrusive patterns. Some of these features are irrelevant and redundant. The drawback to this approach is a lengthy detection process. In real-time environment this may degrade the performance of an IDS. T...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Zainal, Anazida, Maarof, Mohd Aizaini, Shamsuddin, Siti Mariyam
التنسيق: مقال
منشور في: Springer-Verlag Berlin Heildelberg 2007
الموضوعات:
الوصول للمادة أونلاين:http://eprints.utm.my/id/eprint/5599/
https://link.springer.com/chapter/10.1007/978-3-540-74472-6_42
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Universiti Teknologi Malaysia
الوصف
الملخص:Most of the existing IDS use all the features in network packet to evaluate and look for known intrusive patterns. Some of these features are irrelevant and redundant. The drawback to this approach is a lengthy detection process. In real-time environment this may degrade the performance of an IDS. Thus, feature selection is required to address this issue. In this paper, we use wrapper approach where we integrate Rough Set and Particle Swarm to form a 2-tier structure of feature selection process. Experimental results show that feature subset proposed by Rough-DPSO gives better representation of data and they are robust.