An eigenvalue multiplicity formula for the Schur complement of a 3 x 3 block operator matrix

We consider the Schur complement S(λ) with real spectral parameter λ corresponding to a certain 3 × 3 block operator matrix. In our case the essential spectrum of S(λ) can have gaps. We obtain formulas for the number and multiplicities of eigenvalues belonging to an arbitrary interval outside the es...

Full description

Saved in:
Bibliographic Details
Main Authors: Muminov, M. E., Rasulov, T. Kh.
Format: Article
Published: 2015
Subjects:
Online Access:http://eprints.utm.my/id/eprint/57750/
http://dx.doi.org/10.1134/S0037446615040126
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
id my.utm.57750
record_format eprints
spelling my.utm.577502021-11-07T06:20:43Z http://eprints.utm.my/id/eprint/57750/ An eigenvalue multiplicity formula for the Schur complement of a 3 x 3 block operator matrix Muminov, M. E. Rasulov, T. Kh. T Technology (General) We consider the Schur complement S(λ) with real spectral parameter λ corresponding to a certain 3 × 3 block operator matrix. In our case the essential spectrum of S(λ) can have gaps. We obtain formulas for the number and multiplicities of eigenvalues belonging to an arbitrary interval outside the essential spectrum of S(λ). 2015 Article PeerReviewed Muminov, M. E. and Rasulov, T. Kh. (2015) An eigenvalue multiplicity formula for the Schur complement of a 3 x 3 block operator matrix. Siberian Mathematical Journal, 56 (4). pp. 699-713. ISSN 0369-8203 http://dx.doi.org/10.1134/S0037446615040126 DOI: 10.1134/S0037446615040126
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic T Technology (General)
spellingShingle T Technology (General)
Muminov, M. E.
Rasulov, T. Kh.
An eigenvalue multiplicity formula for the Schur complement of a 3 x 3 block operator matrix
description We consider the Schur complement S(λ) with real spectral parameter λ corresponding to a certain 3 × 3 block operator matrix. In our case the essential spectrum of S(λ) can have gaps. We obtain formulas for the number and multiplicities of eigenvalues belonging to an arbitrary interval outside the essential spectrum of S(λ).
format Article
author Muminov, M. E.
Rasulov, T. Kh.
author_facet Muminov, M. E.
Rasulov, T. Kh.
author_sort Muminov, M. E.
title An eigenvalue multiplicity formula for the Schur complement of a 3 x 3 block operator matrix
title_short An eigenvalue multiplicity formula for the Schur complement of a 3 x 3 block operator matrix
title_full An eigenvalue multiplicity formula for the Schur complement of a 3 x 3 block operator matrix
title_fullStr An eigenvalue multiplicity formula for the Schur complement of a 3 x 3 block operator matrix
title_full_unstemmed An eigenvalue multiplicity formula for the Schur complement of a 3 x 3 block operator matrix
title_sort eigenvalue multiplicity formula for the schur complement of a 3 x 3 block operator matrix
publishDate 2015
url http://eprints.utm.my/id/eprint/57750/
http://dx.doi.org/10.1134/S0037446615040126
_version_ 1717093380236771328