n improved space vector modulation for a three-to-seven-phase matrix converter with reduced number of switching vectors
This paper proposes a space vector modulation (SVM) scheme for a three-to-seven-phase matrix converter (MC), feeding a variable-voltage variable-frequency multiphase drive. The main feature of the proposed technique is that it utilizes only 129 out of 2187 possible active space vectors for a success...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2015
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/57766/ http://dx.doi.org/10.1109/TIE.2014.2381158 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
id |
my.utm.57766 |
---|---|
record_format |
eprints |
spelling |
my.utm.577662021-08-22T07:06:21Z http://eprints.utm.my/id/eprint/57766/ n improved space vector modulation for a three-to-seven-phase matrix converter with reduced number of switching vectors Ahmed, Sk Moin Salam, Zainal Abu Rub, Haitham TK Electrical engineering. Electronics Nuclear engineering This paper proposes a space vector modulation (SVM) scheme for a three-to-seven-phase matrix converter (MC), feeding a variable-voltage variable-frequency multiphase drive. The main feature of the proposed technique is that it utilizes only 129 out of 2187 possible active space vectors for a successful ac-ac power conversion. Since the number of vectors is significantly reduced, the switching patterns are simplified, and the execution time of the algorithm is shortened. Despite the drastic reduction in the number of active vectors, it is found that there is no significant degradation in the performance of the MC. Furthermore, the SVM also produces balanced sinusoidal input currents with a unity power factor over a wide operational frequency range (1-110 Hz). In this paper, the theoretical analysis is supported by simulation and validated using a hardware prototype. The output voltage can reach up to 76.93% of the input voltage, which is the maximum physical limit of a three-to-seven-phase MC. In addition, it exhibits a better harmonic profile than the carrier-based modulation scheme; the total harmonic distortion for the output voltage waveform is measured to be below 5% over the entire operating frequency range. Institute of Electrical and Electronics Engineers Inc. 2015 Article PeerReviewed Ahmed, Sk Moin and Salam, Zainal and Abu Rub, Haitham (2015) n improved space vector modulation for a three-to-seven-phase matrix converter with reduced number of switching vectors. IEEE Transactions on Industrial Electronics, 62 (6). pp. 3327-3337. ISSN 0278-0046 http://dx.doi.org/10.1109/TIE.2014.2381158 DOI:10.1109/TIE.2014.2381158 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Ahmed, Sk Moin Salam, Zainal Abu Rub, Haitham n improved space vector modulation for a three-to-seven-phase matrix converter with reduced number of switching vectors |
description |
This paper proposes a space vector modulation (SVM) scheme for a three-to-seven-phase matrix converter (MC), feeding a variable-voltage variable-frequency multiphase drive. The main feature of the proposed technique is that it utilizes only 129 out of 2187 possible active space vectors for a successful ac-ac power conversion. Since the number of vectors is significantly reduced, the switching patterns are simplified, and the execution time of the algorithm is shortened. Despite the drastic reduction in the number of active vectors, it is found that there is no significant degradation in the performance of the MC. Furthermore, the SVM also produces balanced sinusoidal input currents with a unity power factor over a wide operational frequency range (1-110 Hz). In this paper, the theoretical analysis is supported by simulation and validated using a hardware prototype. The output voltage can reach up to 76.93% of the input voltage, which is the maximum physical limit of a three-to-seven-phase MC. In addition, it exhibits a better harmonic profile than the carrier-based modulation scheme; the total harmonic distortion for the output voltage waveform is measured to be below 5% over the entire operating frequency range. |
format |
Article |
author |
Ahmed, Sk Moin Salam, Zainal Abu Rub, Haitham |
author_facet |
Ahmed, Sk Moin Salam, Zainal Abu Rub, Haitham |
author_sort |
Ahmed, Sk Moin |
title |
n improved space vector modulation for a three-to-seven-phase matrix converter with reduced number of switching vectors |
title_short |
n improved space vector modulation for a three-to-seven-phase matrix converter with reduced number of switching vectors |
title_full |
n improved space vector modulation for a three-to-seven-phase matrix converter with reduced number of switching vectors |
title_fullStr |
n improved space vector modulation for a three-to-seven-phase matrix converter with reduced number of switching vectors |
title_full_unstemmed |
n improved space vector modulation for a three-to-seven-phase matrix converter with reduced number of switching vectors |
title_sort |
n improved space vector modulation for a three-to-seven-phase matrix converter with reduced number of switching vectors |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
publishDate |
2015 |
url |
http://eprints.utm.my/id/eprint/57766/ http://dx.doi.org/10.1109/TIE.2014.2381158 |
_version_ |
1709667321956532224 |