Effect of CPW edges chamfering to the performance of ultra wideband antenna
In this paper, an Ultra Wideband (UWB) antenna is presented. The antenna radiating patch is circular in shape with coplanar waveguide (CPW) feeding technique. The proposed chamfering to the outer edges of the ground plane successfully widens the -10 dB impedance bandwidth of the antenna to cover fro...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit UTM Press
2015
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/58360/1/RaimiDewan2015_EffectOfCPWEdgesChamferingToThePerformance.pdf http://eprints.utm.my/id/eprint/58360/ http://dx.doi.org/10.11113/jt.v77.6287 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Language: | English |
Summary: | In this paper, an Ultra Wideband (UWB) antenna is presented. The antenna radiating patch is circular in shape with coplanar waveguide (CPW) feeding technique. The proposed chamfering to the outer edges of the ground plane successfully widens the -10 dB impedance bandwidth of the antenna to cover from 1.92 GHz up to 15.16 GHz (correspond to 155% fractional bandwidth). The antenna gain varies from 2 to 5 dB over the operating band. Parametrical studies have been conducted for four different conditions of the ground plane; without chamfering, chamfering on the inner edges, chamfering on the outer edges and both chamfering of inner and outer edges. The effects of distinguished chamfering conditions to antenna performance are analyzed. The measured and simulated results for reflection coefficients and radiation patterns (2.45 GHz, 3.5 GHz and 5.8 GHz) are presented. The corresponding realized gains are 2.14 dB, 2.85 dB and 3.4 dB respectively. The measured results satisfactorily agreed with the simulated ones. The antenna is 8 - 37% wider bandwidth than previous research. |
---|