Neuro-fuzzy technique to predict air-overpressure induced by blasting

In addition to all benefits of blasting in mining and civil engineering applications, blasting has some undesirable impacts on surrounding areas. Blast-induced air-overpressure (AOp) is one of the most important environmental impacts of blasting operation which may cause severe damage to nearby resi...

Full description

Saved in:
Bibliographic Details
Main Authors: Armaghani, Danial Jahed, Hajihassani, Mohsen, Sohaei, Houman, Mohamad, Edy Tonnizam, Marto, Aminaton, Motaghedi, Hossein, Moghaddam, Mohammad Reza
Format: Article
Published: Springer Verlag 2015
Subjects:
Online Access:http://eprints.utm.my/id/eprint/58634/
http://dx.doi.org/10.1007/s12517-015-1984-3
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Description
Summary:In addition to all benefits of blasting in mining and civil engineering applications, blasting has some undesirable impacts on surrounding areas. Blast-induced air-overpressure (AOp) is one of the most important environmental impacts of blasting operation which may cause severe damage to nearby residents and structures. Hence, it is a major concern to predict and subsequently control the AOp due to blasting. This paper presents an adaptive neuro-fuzzy inference system (ANFIS) model for prediction of blast-induced AOp in quarry blasting sites. For this purpose, 128 blasting operations were monitored in three quarry sites, Malaysia. Several models were constructed to obtain the optimummodel in which each model involved five inputs and one output. Values of maximum charge per delay, powder factor, burden to spacing ratio, stemming length, and distance between monitoring station and blast face were set as input parameters to predict AOp. For comparison purposes, considering the same data, AOp values were predicted through the pre-developed artificial neural network (ANN) model and multiple regression (MR) technique. The results demonstrated the superiority of the ANFIS model to predict AOp compared to other methods. Moreover, results of sensitivity analysis indicated that the maximum charge per delay and powder factor and distance from the blast face are the most influential parameters on AOp.