Observing consistency in online communication patterns for user re-identification
Comprehension of the statistical and structural mechanisms governing human dynamics in online interaction plays a pivotal role in online user identification, online profile development, and recommender systems. However, building a characteristic model of human dynamics on the Internet involves a com...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Published: |
Public Library of Science
2016
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/70089/ http://dx.doi.org/10.1371/journal.pone.0166930 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
id |
my.utm.70089 |
---|---|
record_format |
eprints |
spelling |
my.utm.700892017-11-22T00:45:07Z http://eprints.utm.my/id/eprint/70089/ Observing consistency in online communication patterns for user re-identification Adeyemi, I. R. Razak, S. A. Salleh, M. Venter, H. S. QA75 Electronic computers. Computer science Comprehension of the statistical and structural mechanisms governing human dynamics in online interaction plays a pivotal role in online user identification, online profile development, and recommender systems. However, building a characteristic model of human dynamics on the Internet involves a complete analysis of the variations in human activity patterns, which is a complex process. This complexity is inherent in human dynamics and has not been extensively studied to reveal the structural composition of human behavior. A typical method of anatomizing such a complex system is viewing all independent interconnectivity that constitutes the complexity. An examination of the various dimensions of human communication pattern in online interactions is presented in this paper. The study employed reliable server-side web data from 31 known users to explore characteristics of human-driven communications. Various machine-learning techniques were explored. The results revealed that each individual exhibited a relatively consistent, unique behavioral signature and that the logistic regression model and model tree can be used to accurately distinguish online users. These results are applicable to one-to-one online user identification processes, insider misuse investigation processes, and online profiling in various areas. Public Library of Science 2016 Article PeerReviewed Adeyemi, I. R. and Razak, S. A. and Salleh, M. and Venter, H. S. (2016) Observing consistency in online communication patterns for user re-identification. Plos One, 11 (12). pp. 1-3. ISSN 1932-6203 http://dx.doi.org/10.1371/journal.pone.0166930 DOI:10.1371/journal.pone.0166930 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
QA75 Electronic computers. Computer science |
spellingShingle |
QA75 Electronic computers. Computer science Adeyemi, I. R. Razak, S. A. Salleh, M. Venter, H. S. Observing consistency in online communication patterns for user re-identification |
description |
Comprehension of the statistical and structural mechanisms governing human dynamics in online interaction plays a pivotal role in online user identification, online profile development, and recommender systems. However, building a characteristic model of human dynamics on the Internet involves a complete analysis of the variations in human activity patterns, which is a complex process. This complexity is inherent in human dynamics and has not been extensively studied to reveal the structural composition of human behavior. A typical method of anatomizing such a complex system is viewing all independent interconnectivity that constitutes the complexity. An examination of the various dimensions of human communication pattern in online interactions is presented in this paper. The study employed reliable server-side web data from 31 known users to explore characteristics of human-driven communications. Various machine-learning techniques were explored. The results revealed that each individual exhibited a relatively consistent, unique behavioral signature and that the logistic regression model and model tree can be used to accurately distinguish online users. These results are applicable to one-to-one online user identification processes, insider misuse investigation processes, and online profiling in various areas. |
format |
Article |
author |
Adeyemi, I. R. Razak, S. A. Salleh, M. Venter, H. S. |
author_facet |
Adeyemi, I. R. Razak, S. A. Salleh, M. Venter, H. S. |
author_sort |
Adeyemi, I. R. |
title |
Observing consistency in online communication patterns for user re-identification |
title_short |
Observing consistency in online communication patterns for user re-identification |
title_full |
Observing consistency in online communication patterns for user re-identification |
title_fullStr |
Observing consistency in online communication patterns for user re-identification |
title_full_unstemmed |
Observing consistency in online communication patterns for user re-identification |
title_sort |
observing consistency in online communication patterns for user re-identification |
publisher |
Public Library of Science |
publishDate |
2016 |
url |
http://eprints.utm.my/id/eprint/70089/ http://dx.doi.org/10.1371/journal.pone.0166930 |
_version_ |
1643656091817476096 |