Strength prediction of rotary brace damper using MLR and MARS

This study predicts the strength of rotary brace damper by analyzing a new set of probabilistic models using the usual method of multiple linear regressions (MLR) and advanced machine-learning methods of multivariate adaptive regression splines (MARS), Rotary brace damper can be easily assembled wit...

Full description

Saved in:
Bibliographic Details
Main Authors: Mansouri, I., Safa, M., Ibrahim, Z., Kisi, O., Tahir, M. M., Baharom, S., Azimi, M.
Format: Article
Published: Techno Press 2016
Subjects:
Online Access:http://eprints.utm.my/id/eprint/71916/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991435097&doi=10.12989%2fsem.2016.60.3.471&partnerID=40&md5=610b6c7e9ae7ec0a23009ce838af5b20
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
id my.utm.71916
record_format eprints
spelling my.utm.719162017-11-22T12:07:36Z http://eprints.utm.my/id/eprint/71916/ Strength prediction of rotary brace damper using MLR and MARS Mansouri, I. Safa, M. Ibrahim, Z. Kisi, O. Tahir, M. M. Baharom, S. Azimi, M. TH434-437 Quantity surveying This study predicts the strength of rotary brace damper by analyzing a new set of probabilistic models using the usual method of multiple linear regressions (MLR) and advanced machine-learning methods of multivariate adaptive regression splines (MARS), Rotary brace damper can be easily assembled with high energy-dissipation capability. To investigate the behavior of this damper in structures, a steel frame is modeled with this device subjected to monotonic and cyclic loading. Several response parameters are considered, and the performance of damper in reducing each response is evaluated. MLR and MARS methods were used to predict the strength of this damper. Displacement was determined to be the most effective parameter of damper strength, whereas the thickness did not exhibit any effect. Adding thickness parameter as inputs to MARS and MLR models did not increase the accuracies of the models in predicting the strength of this damper. The MARS model with a root mean square error (RMSE) of 0.127 and mean absolute error (MAE) of 0.090 performed better than the MLR model with an RMSE of 0.221 and MAE of 0.181. Techno Press 2016 Article PeerReviewed Mansouri, I. and Safa, M. and Ibrahim, Z. and Kisi, O. and Tahir, M. M. and Baharom, S. and Azimi, M. (2016) Strength prediction of rotary brace damper using MLR and MARS. Structural Engineering and Mechanics, 60 (3). pp. 471-488. ISSN 1225-4568 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991435097&doi=10.12989%2fsem.2016.60.3.471&partnerID=40&md5=610b6c7e9ae7ec0a23009ce838af5b20
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic TH434-437 Quantity surveying
spellingShingle TH434-437 Quantity surveying
Mansouri, I.
Safa, M.
Ibrahim, Z.
Kisi, O.
Tahir, M. M.
Baharom, S.
Azimi, M.
Strength prediction of rotary brace damper using MLR and MARS
description This study predicts the strength of rotary brace damper by analyzing a new set of probabilistic models using the usual method of multiple linear regressions (MLR) and advanced machine-learning methods of multivariate adaptive regression splines (MARS), Rotary brace damper can be easily assembled with high energy-dissipation capability. To investigate the behavior of this damper in structures, a steel frame is modeled with this device subjected to monotonic and cyclic loading. Several response parameters are considered, and the performance of damper in reducing each response is evaluated. MLR and MARS methods were used to predict the strength of this damper. Displacement was determined to be the most effective parameter of damper strength, whereas the thickness did not exhibit any effect. Adding thickness parameter as inputs to MARS and MLR models did not increase the accuracies of the models in predicting the strength of this damper. The MARS model with a root mean square error (RMSE) of 0.127 and mean absolute error (MAE) of 0.090 performed better than the MLR model with an RMSE of 0.221 and MAE of 0.181.
format Article
author Mansouri, I.
Safa, M.
Ibrahim, Z.
Kisi, O.
Tahir, M. M.
Baharom, S.
Azimi, M.
author_facet Mansouri, I.
Safa, M.
Ibrahim, Z.
Kisi, O.
Tahir, M. M.
Baharom, S.
Azimi, M.
author_sort Mansouri, I.
title Strength prediction of rotary brace damper using MLR and MARS
title_short Strength prediction of rotary brace damper using MLR and MARS
title_full Strength prediction of rotary brace damper using MLR and MARS
title_fullStr Strength prediction of rotary brace damper using MLR and MARS
title_full_unstemmed Strength prediction of rotary brace damper using MLR and MARS
title_sort strength prediction of rotary brace damper using mlr and mars
publisher Techno Press
publishDate 2016
url http://eprints.utm.my/id/eprint/71916/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991435097&doi=10.12989%2fsem.2016.60.3.471&partnerID=40&md5=610b6c7e9ae7ec0a23009ce838af5b20
_version_ 1643656312592007168