PVDF/CaCO3 composite hollow fiber membrane for CO2 absorption in gas-liquid membrane contactor
Porous hydrophobic polyvinylidene fluoride (PVDF) composite hollow fiber membranes were fabricated via phase inversion method by embedding different amounts of hydrophobic calcium carbonate (CaCO3) nano-particles in the polymer matrix. The effects of nano-particle loadings on the morphology, structu...
Saved in:
Main Authors: | , , , , |
---|---|
格式: | Article |
出版: |
Elsevier B.V.
2016
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/72681/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84961613337&doi=10.1016%2fj.jngse.2016.03.053&partnerID=40&md5=beb4ad01e02bdd5842f57e1a8e00b9ea |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Universiti Teknologi Malaysia |
總結: | Porous hydrophobic polyvinylidene fluoride (PVDF) composite hollow fiber membranes were fabricated via phase inversion method by embedding different amounts of hydrophobic calcium carbonate (CaCO3) nano-particles in the polymer matrix. The effects of nano-particle loadings on the morphology, structure and performance of the spun membranes in gas-liquid contactors were investigated. The incorporation of hydrophobic nano-particles into the polymer network enabled the formation of more abundant and narrower finger-like pores in the composite membranes compared to plain PVDF membrane. Moreover, the addition of nano-particles enhanced the surface roughness, permeation rate, porosity and wettability resistance of the composite membranes. CO2 absorption performance of the fabricated membranes was evaluated via a gas-liquid membrane contactor system. The CO2 flux was improved to some extent by increasing the mixing ratio of CaCO3. Peak absorption performance of 1.52 × 10-3 mol m-2 s-1 at 300 ml/min absorbent flow rate was achieved when 20/100 weight ratio of CaCO3/PVDF was employed. However, further increase of the ratio resulted in a composite membrane with lower absorption performance than the other composite membranes. Moreover, a long-term stability study of the composite membrane with the best CO2 absorption flux showed no decline in performance in the initial 210 h of operation, indicating that the membrane possesses high potential for gas-liquid contactor applications. |
---|