Multi-template homology-based structural model of L-2-haloacid dehalogenase (DehL) from Rhizobium sp. RC1
Dehalogenases are of high interest due to their potential applications in bioremediation and in synthesis of various industrial products. DehL is an L-2-haloacid dehalogenase (EC 3.8.1.2) that catalyses the cleavage of halide ion from L-2-halocarboxylic acid to produce D-2-hydroxycarboxylic acid. Al...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
Taylor and Francis Ltd.
2016
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/72801/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84996602306&doi=10.1080%2f07391102.2016.1254115&partnerID=40&md5=339a12cf06ab94d834091c0c89cfe755 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Summary: | Dehalogenases are of high interest due to their potential applications in bioremediation and in synthesis of various industrial products. DehL is an L-2-haloacid dehalogenase (EC 3.8.1.2) that catalyses the cleavage of halide ion from L-2-halocarboxylic acid to produce D-2-hydroxycarboxylic acid. Although DehL utilises the same substrates as the other L-2-haloacid dehalogenases, its deduced amino acid sequence is substantially different (<25%) from those of the rest L-2-haloacid dehalogenases. To date, the 3D structure of DehL is not available. This limits the detailed understanding of the enzyme’s reaction mechanism. The present work predicted the first homology-based model of DehL and defined its active site. The monomeric unit of the DehL constitutes α/β structure that is organised into two distinct structural domains: main and subdomains. Despite the sequence disparity between the DehL and other L-2-haloacid dehalogenases, its structural model share similar fold as the experimentally solved L-DEX and DehlB structures. The findings of the present work will play a crucial role in elucidating the molecular details of the DehL functional mechanism. |
---|