Effect of ceria and strontia over Ru/Mn/Al2O3 catalyst: catalytic methanation, physicochemical and mechanistic studies
The 65 wt% of ceria and strontia based catalysts prepared by impregnation with RuMn/Al2O3 were tested on its CO2 methanation reaction under reducing pretreatment at 300 °C. The result obtained revealed that the addition of Ce to RuMn/Al2O3 has a positive effect on the activity and catalyst stability...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Published: |
Elsevier Ltd
2016
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/73761/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84949255965&doi=10.1016%2fj.jcou.2015.11.005&partnerID=40&md5=4cd2ae9be05ba1264a4eeedac92b916a |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
id |
my.utm.73761 |
---|---|
record_format |
eprints |
spelling |
my.utm.737612017-11-18T04:29:46Z http://eprints.utm.my/id/eprint/73761/ Effect of ceria and strontia over Ru/Mn/Al2O3 catalyst: catalytic methanation, physicochemical and mechanistic studies Toemen, S. Abu Bakar, W. A. W. Ali, R. QD Chemistry The 65 wt% of ceria and strontia based catalysts prepared by impregnation with RuMn/Al2O3 were tested on its CO2 methanation reaction under reducing pretreatment at 300 °C. The result obtained revealed that the addition of Ce to RuMn/Al2O3 has a positive effect on the activity and catalyst stability compared to the Sr containing catalyst. The CO2 conversion over Ru/Mn/Ce-65/Al2O3 achieved 97.73% with 91.31% of methane formation at a reaction temperature of 200 °C while, 73.10% conversion over Ru/Mn/Sr-65/Al2O3 catalyst with 44.58% of methane yielded at reaction temperature of 210 °C. The characterization results obtained suggest that the CeO2, SrO2, RuO2, Mn2O3 and orthorhombic Al2O3 were the active species for both catalysts while, the presence of spinel compound, Sr4(Ru2O9) caused the reducibility and basicity of Ru/Mn/Sr-65/Al2O3 catalyst decreased hence reduced the catalytic activity eventually. The mechanistic study showed it was depended on the type of catalysts as the CO2 adsorbed on the Sr based catalyst tended to form monodentate carbonate at the initial state before forming the formate species when it was hydrogenated and finally releasing the methane. Meanwhile, the methane formation on Ce based catalyst involved the initially adsorption and dissociation of CO2 into C and O adsorbed species before reacting with the adsorbed H2 to form methane gas. Elsevier Ltd 2016 Article PeerReviewed Toemen, S. and Abu Bakar, W. A. W. and Ali, R. (2016) Effect of ceria and strontia over Ru/Mn/Al2O3 catalyst: catalytic methanation, physicochemical and mechanistic studies. Journal of CO2 Utilization, 13 . pp. 38-49. ISSN 2212-9820 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84949255965&doi=10.1016%2fj.jcou.2015.11.005&partnerID=40&md5=4cd2ae9be05ba1264a4eeedac92b916a |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
QD Chemistry |
spellingShingle |
QD Chemistry Toemen, S. Abu Bakar, W. A. W. Ali, R. Effect of ceria and strontia over Ru/Mn/Al2O3 catalyst: catalytic methanation, physicochemical and mechanistic studies |
description |
The 65 wt% of ceria and strontia based catalysts prepared by impregnation with RuMn/Al2O3 were tested on its CO2 methanation reaction under reducing pretreatment at 300 °C. The result obtained revealed that the addition of Ce to RuMn/Al2O3 has a positive effect on the activity and catalyst stability compared to the Sr containing catalyst. The CO2 conversion over Ru/Mn/Ce-65/Al2O3 achieved 97.73% with 91.31% of methane formation at a reaction temperature of 200 °C while, 73.10% conversion over Ru/Mn/Sr-65/Al2O3 catalyst with 44.58% of methane yielded at reaction temperature of 210 °C. The characterization results obtained suggest that the CeO2, SrO2, RuO2, Mn2O3 and orthorhombic Al2O3 were the active species for both catalysts while, the presence of spinel compound, Sr4(Ru2O9) caused the reducibility and basicity of Ru/Mn/Sr-65/Al2O3 catalyst decreased hence reduced the catalytic activity eventually. The mechanistic study showed it was depended on the type of catalysts as the CO2 adsorbed on the Sr based catalyst tended to form monodentate carbonate at the initial state before forming the formate species when it was hydrogenated and finally releasing the methane. Meanwhile, the methane formation on Ce based catalyst involved the initially adsorption and dissociation of CO2 into C and O adsorbed species before reacting with the adsorbed H2 to form methane gas. |
format |
Article |
author |
Toemen, S. Abu Bakar, W. A. W. Ali, R. |
author_facet |
Toemen, S. Abu Bakar, W. A. W. Ali, R. |
author_sort |
Toemen, S. |
title |
Effect of ceria and strontia over Ru/Mn/Al2O3 catalyst: catalytic methanation, physicochemical and mechanistic studies |
title_short |
Effect of ceria and strontia over Ru/Mn/Al2O3 catalyst: catalytic methanation, physicochemical and mechanistic studies |
title_full |
Effect of ceria and strontia over Ru/Mn/Al2O3 catalyst: catalytic methanation, physicochemical and mechanistic studies |
title_fullStr |
Effect of ceria and strontia over Ru/Mn/Al2O3 catalyst: catalytic methanation, physicochemical and mechanistic studies |
title_full_unstemmed |
Effect of ceria and strontia over Ru/Mn/Al2O3 catalyst: catalytic methanation, physicochemical and mechanistic studies |
title_sort |
effect of ceria and strontia over ru/mn/al2o3 catalyst: catalytic methanation, physicochemical and mechanistic studies |
publisher |
Elsevier Ltd |
publishDate |
2016 |
url |
http://eprints.utm.my/id/eprint/73761/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84949255965&doi=10.1016%2fj.jcou.2015.11.005&partnerID=40&md5=4cd2ae9be05ba1264a4eeedac92b916a |
_version_ |
1643656740811571200 |