High-dimensional quantitative structure-activity relationship modeling of influenza neuraminidase a/PR/8/34 (H1N1) inhibitors based on a two-stage adaptive penalized rank regression

Outliers in the biological activity variable or the heavy tailed distribution of the error are often encountered in practice. Under these circumstances, the quantittative structure-activity relationship (QSAR) model using multiple linear regression is not efficient. In this paper, a two-stage adapti...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Algamal, Zakariya Yahya, Lee, Muhammad Hisyam, Al-Fakih, Abdo Mohammed
التنسيق: مقال
منشور في: John Wiley and Sons Ltd 2016
الموضوعات:
الوصول للمادة أونلاين:http://eprints.utm.my/id/eprint/73874/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84956940609&doi=10.1002%2fcem.2766&partnerID=40&md5=41bd5b8a2d272692a0c09ecf0c4c3aae
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Outliers in the biological activity variable or the heavy tailed distribution of the error are often encountered in practice. Under these circumstances, the quantittative structure-activity relationship (QSAR) model using multiple linear regression is not efficient. In this paper, a two-stage adaptive penalized rank regression is proposed for constructing a robust and efficient high-dimensional QSAR model of influenza virus neuraminidase A/PR/8/34 (H1N1) inhibitors. The results demonstrate the effectiveness of our proposed method in simultaneously estimating a robust QSAR model and selecting informative molecular descriptors. Furthermore, the results prove that the proposed method can significantly encourage the grouping effect. The proposed method, because of the high predictive ability and robustness, could be a useful method in high-dimensional QSAR modeling.