Pineapple peel fibre biocomposite: Characterisation and biodegradation studies
In this study, pineapple peel fibre (PAPF) based low density polyethylene (LDPE) biocomposites for green packaging was studied. The PAPF was first being treated with alkali before compounded with LDPE. The mixture was compounded using twin screw extruder and the test samples were prepared using hot...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Published: |
Italian Association of Chemical Engineering - AIDIC
2017
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/75832/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019499277&doi=10.3303%2fCET1756223&partnerID=40&md5=3ba9ec3c9972d1b004500b1c433d04cf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
id |
my.utm.75832 |
---|---|
record_format |
eprints |
spelling |
my.utm.758322018-05-30T04:01:20Z http://eprints.utm.my/id/eprint/75832/ Pineapple peel fibre biocomposite: Characterisation and biodegradation studies Ali, R. R. Rahman, W. A. W. A. Kasmaini, R. M. Ibrahim, N. Hasbullah, H. Sadikin, A. N. Asli, U. A. Abouzari, E. T Technology (General) In this study, pineapple peel fibre (PAPF) based low density polyethylene (LDPE) biocomposites for green packaging was studied. The PAPF was first being treated with alkali before compounded with LDPE. The mixture was compounded using twin screw extruder and the test samples were prepared using hot press machine. The compatibility of the PAPF as biocomposites was observed through the characterisation analysis and thermal properties and also the biodegradation analysis. Melt flow index (MFI) analysis was conducted to determine the process ability of the biocomposites. As the fibre loading in the biocomposites increases, the MFI values were decreased. The amount of water absorption was increased with the increases of PAPF loading due to the higher cellulose content. Thermal stability studies of biocomposites were undergoing thermogravimetry (TGA) and differential scanning calorimetry (DSC) analysis. Melting temperature (Tm) for the biocomposite was determined from the DSC analysis while the degradation temperature was determined by using the TGA analysis. The thermal properties of PAPF biocomposites were more or less the same as the LDPE properties. The biocomposites was buried in the soil for a month and exposed to fungi environment for 28 d for biodegradation analysis and the highest PAPF/LDPE loading biocomposites degraded the most. Therefore, PAPF biocomposites was compatible for green packaging. Italian Association of Chemical Engineering - AIDIC 2017 Article PeerReviewed Ali, R. R. and Rahman, W. A. W. A. and Kasmaini, R. M. and Ibrahim, N. and Hasbullah, H. and Sadikin, A. N. and Asli, U. A. and Abouzari, E. (2017) Pineapple peel fibre biocomposite: Characterisation and biodegradation studies. Chemical Engineering Transactions, 56 . pp. 1333-1338. ISSN 2283-9216 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019499277&doi=10.3303%2fCET1756223&partnerID=40&md5=3ba9ec3c9972d1b004500b1c433d04cf |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
T Technology (General) |
spellingShingle |
T Technology (General) Ali, R. R. Rahman, W. A. W. A. Kasmaini, R. M. Ibrahim, N. Hasbullah, H. Sadikin, A. N. Asli, U. A. Abouzari, E. Pineapple peel fibre biocomposite: Characterisation and biodegradation studies |
description |
In this study, pineapple peel fibre (PAPF) based low density polyethylene (LDPE) biocomposites for green packaging was studied. The PAPF was first being treated with alkali before compounded with LDPE. The mixture was compounded using twin screw extruder and the test samples were prepared using hot press machine. The compatibility of the PAPF as biocomposites was observed through the characterisation analysis and thermal properties and also the biodegradation analysis. Melt flow index (MFI) analysis was conducted to determine the process ability of the biocomposites. As the fibre loading in the biocomposites increases, the MFI values were decreased. The amount of water absorption was increased with the increases of PAPF loading due to the higher cellulose content. Thermal stability studies of biocomposites were undergoing thermogravimetry (TGA) and differential scanning calorimetry (DSC) analysis. Melting temperature (Tm) for the biocomposite was determined from the DSC analysis while the degradation temperature was determined by using the TGA analysis. The thermal properties of PAPF biocomposites were more or less the same as the LDPE properties. The biocomposites was buried in the soil for a month and exposed to fungi environment for 28 d for biodegradation analysis and the highest PAPF/LDPE loading biocomposites degraded the most. Therefore, PAPF biocomposites was compatible for green packaging. |
format |
Article |
author |
Ali, R. R. Rahman, W. A. W. A. Kasmaini, R. M. Ibrahim, N. Hasbullah, H. Sadikin, A. N. Asli, U. A. Abouzari, E. |
author_facet |
Ali, R. R. Rahman, W. A. W. A. Kasmaini, R. M. Ibrahim, N. Hasbullah, H. Sadikin, A. N. Asli, U. A. Abouzari, E. |
author_sort |
Ali, R. R. |
title |
Pineapple peel fibre biocomposite: Characterisation and biodegradation studies |
title_short |
Pineapple peel fibre biocomposite: Characterisation and biodegradation studies |
title_full |
Pineapple peel fibre biocomposite: Characterisation and biodegradation studies |
title_fullStr |
Pineapple peel fibre biocomposite: Characterisation and biodegradation studies |
title_full_unstemmed |
Pineapple peel fibre biocomposite: Characterisation and biodegradation studies |
title_sort |
pineapple peel fibre biocomposite: characterisation and biodegradation studies |
publisher |
Italian Association of Chemical Engineering - AIDIC |
publishDate |
2017 |
url |
http://eprints.utm.my/id/eprint/75832/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019499277&doi=10.3303%2fCET1756223&partnerID=40&md5=3ba9ec3c9972d1b004500b1c433d04cf |
_version_ |
1643657171743801344 |