Synthesis of titania-bentonite nanocomposite and its applications in water-based drilling fluids
Titania or TiO2-bentonite nanocomposite was synthesised by environmental friendly and cost effective hydrothermal method. Synthesised nanocomposite was successfully characterised by Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). The target of the study was to enhance the rheological...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Published: |
Italian Association of Chemical Engineering - AIDIC
2017
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/75889/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019456994&doi=10.3303%2fCET1756159&partnerID=40&md5=e3a7f99f274942e49febb50dbc8a26c3 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Summary: | Titania or TiO2-bentonite nanocomposite was synthesised by environmental friendly and cost effective hydrothermal method. Synthesised nanocomposite was successfully characterised by Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). The target of the study was to enhance the rheological behaviour of the water-based drilling fluid (WBDF) by using synthesised nanocomposite. The experimental results revealed that Titania-bentonite nanocomposite exhibited better rheological characteristics than conventional WBDF. Rheological properties in particular yield point (YP) and 10-min gel strength (10-min GS) were improved by 57 % and 40 % compared to basic drilling fluid after addition of 1.0 g of the synthesised nanocomposite at 65.56 °C. API filtrate loss volume and High Pressure High Temperature (HPHT) filtrate loss volume were slightly reduced by 10 %, and 9.2 %. These scientific results can be used to formulate enhanced WBDF at elevated temperatures. |
---|