Numerical analysis of heat and fluid flow in microchannel heat sink with triangular cavities
In recent years, there has been an increasing interest in heat transfer enhancement using nanofluids in corrugated channels due current devices become smaller and smaller and are expected to perform better. The devices will create hot spot and generate more heat are related to the devices performanc...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Published: |
Penerbit Akademia Baru
2017
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/76394/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042778759&partnerID=40&md5=60f103ba26fdc8c1df65bf3efd6516f9 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Summary: | In recent years, there has been an increasing interest in heat transfer enhancement using nanofluids in corrugated channels due current devices become smaller and smaller and are expected to perform better. The devices will create hot spot and generate more heat are related to the devices performance are better and inability of current heat sink to remove heat. So, the aim of this project is to stimulate the nanofluids flow in straight channel and corrugated microchannel using ANSYS software with certain specific parameters to be fixed or stated which are hydraulic diameter is 133.3 μm, Knudsen Number will be fixed when flow is continuum, Reynold number will be below than 1400, so that the flow in within laminar region, the inlet temperature will be 300 K, uniform heat flux 100W/cm2 and inlet velocity will be in the range of 1.0m/s to 4.5m/s. This research will describe the procedure of using ANSYS software and to analysis the heat enhancement, pressure drop, velocity contour of nanofluids happen in straight microchannel compared to triangular cavities microchannel. The analysis proved triangular cavities that using high volume fraction of nanofluid has better performance compared to straight channel with the same volume fraction of nanofluid because the triangular cavities microchannel have the highest nusselt number and lowest friction factor whereby these two factors become indicator to thermal performance. |
---|