A soft computing method for the prediction of energy performance of residential buildings

Buildings are a crucial factor of energy concerns and one of the most significant energy consumers. Accurate estimation of energy efficiency of residential buildings based on the computation of Heating Load (HL) and the Cooling Load (CL) is an important task. Developing computational tools and metho...

全面介紹

Saved in:
書目詳細資料
Main Authors: Nilashi, M., Dalvi-Esfahani, M., Ibrahim, O., Bagherifard, K., Mardani, A., Zakuan, N.
格式: Article
出版: Elsevier B.V. 2017
主題:
在線閱讀:http://eprints.utm.my/id/eprint/76945/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020455137&doi=10.1016%2fj.measurement.2017.05.048&partnerID=40&md5=9e48b8f923ff559ba701b1c33fb86b2f
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Buildings are a crucial factor of energy concerns and one of the most significant energy consumers. Accurate estimation of energy efficiency of residential buildings based on the computation of Heating Load (HL) and the Cooling Load (CL) is an important task. Developing computational tools and methods for prediction of energy performance will help the policy makers in efficient design of building. The aim of this study is therefore to develop an efficient method for the prediction of energy performance of residential buildings using machine learning techniques. Our method is developed through clustering, noise removal and prediction techniques. Accordingly, we use Expectation Maximization (EM), Principal Component Analysis (PCA) and Adaptive Neuro-Fuzzy Inference System (ANFIS) methods for clustering, noise removal and prediction tasks, respectively. Experimental results on real-world dataset show that proposed method remarkably improves the accuracy of prediction in relation to the existing state-of-the-art techniques and is efficient in estimating the energy efficiency of residential buildings. The Mean Absolute Error (MAE) of the predictions for HL and CL are respectively 0.16 and 0.52 which show the effectiveness of our method in predicting HL and CL.