Synthesis and characterization of poly(3,4- ethylenedioxythiophene)-poly(styrenesulfonate) coated polylactide/poly(3-hydroxybutyrate-co-3- hydroxyvalerate) electrospun membranes

Biomaterials based scaffolds or membranes fabricated from electrospinning with suitable properties are highly desired in tissue engineering. Blending o f natural polymer with synthetic polymer allows the modulation o f properties to produce membranes for tissue engineering. Recently, conductive poly...

Full description

Saved in:
Bibliographic Details
Main Author: Chang, Hui Chung
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://eprints.utm.my/id/eprint/78539/1/ChangHuiChungMFBME2016.pdf
http://eprints.utm.my/id/eprint/78539/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:110588
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.78539
record_format eprints
spelling my.utm.785392018-08-29T07:31:49Z http://eprints.utm.my/id/eprint/78539/ Synthesis and characterization of poly(3,4- ethylenedioxythiophene)-poly(styrenesulfonate) coated polylactide/poly(3-hydroxybutyrate-co-3- hydroxyvalerate) electrospun membranes Chang, Hui Chung TP Chemical technology Biomaterials based scaffolds or membranes fabricated from electrospinning with suitable properties are highly desired in tissue engineering. Blending o f natural polymer with synthetic polymer allows the modulation o f properties to produce membranes for tissue engineering. Recently, conductive polymers have gained great attention in research due to their conductive properties, which can stimulate tissue regeneration. In this study, composite membrane was fabricated by blending a synthetic polymer, polylactic acid (PLA) and a natural polymer, poly(3- hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) using electrospinning technique. PLA/PHBV electrospun membranes were dipped into PEDOT:PSS solution to prepare conductive membranes. It was observed that electrospinning of 20 % (w/v) PLA/PHBV with the weight ratio of 50:50 in chloroform solvent produced the most uniform fibers with no beads. The coated and uncoated membranes were evaluated using several techniques, including scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), water contact angle (WCA), attenuated total reflectance (ATR), and atomic force microscopy (AFM). The measured electrical conductivity of the 30 % PEDOT:PSS coated PLA/PHBV was 1.45 pS/m. Also, the surface roughness and wettability of the PEDOT:PSS coated PLA/PHBV membranes were greater than the uncoated membranes. Based on the results of the cells viability of human skin fibroblast (HSF) using 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell attachment and cell proliferation, the conductive PEDOT:PSS-coated PLA/PHBV membranes were found to be more favorable for tissue engineering application than the uncoated membranes. Antibacterial evaluation also showed that tetracycline hydrochloride (TCH)-coated membrane possess antibacterial properties. In conclusion, conductive PEDOT:PSS coated membrane that has the potential to be used in tissue engineering application was successfully fabricated and characterized. 2016-05 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/78539/1/ChangHuiChungMFBME2016.pdf Chang, Hui Chung (2016) Synthesis and characterization of poly(3,4- ethylenedioxythiophene)-poly(styrenesulfonate) coated polylactide/poly(3-hydroxybutyrate-co-3- hydroxyvalerate) electrospun membranes. PhD thesis, Universiti Teknologi Malaysia, Faculty of Biosciences and Medical Engineering. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:110588
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TP Chemical technology
spellingShingle TP Chemical technology
Chang, Hui Chung
Synthesis and characterization of poly(3,4- ethylenedioxythiophene)-poly(styrenesulfonate) coated polylactide/poly(3-hydroxybutyrate-co-3- hydroxyvalerate) electrospun membranes
description Biomaterials based scaffolds or membranes fabricated from electrospinning with suitable properties are highly desired in tissue engineering. Blending o f natural polymer with synthetic polymer allows the modulation o f properties to produce membranes for tissue engineering. Recently, conductive polymers have gained great attention in research due to their conductive properties, which can stimulate tissue regeneration. In this study, composite membrane was fabricated by blending a synthetic polymer, polylactic acid (PLA) and a natural polymer, poly(3- hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) using electrospinning technique. PLA/PHBV electrospun membranes were dipped into PEDOT:PSS solution to prepare conductive membranes. It was observed that electrospinning of 20 % (w/v) PLA/PHBV with the weight ratio of 50:50 in chloroform solvent produced the most uniform fibers with no beads. The coated and uncoated membranes were evaluated using several techniques, including scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), water contact angle (WCA), attenuated total reflectance (ATR), and atomic force microscopy (AFM). The measured electrical conductivity of the 30 % PEDOT:PSS coated PLA/PHBV was 1.45 pS/m. Also, the surface roughness and wettability of the PEDOT:PSS coated PLA/PHBV membranes were greater than the uncoated membranes. Based on the results of the cells viability of human skin fibroblast (HSF) using 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell attachment and cell proliferation, the conductive PEDOT:PSS-coated PLA/PHBV membranes were found to be more favorable for tissue engineering application than the uncoated membranes. Antibacterial evaluation also showed that tetracycline hydrochloride (TCH)-coated membrane possess antibacterial properties. In conclusion, conductive PEDOT:PSS coated membrane that has the potential to be used in tissue engineering application was successfully fabricated and characterized.
format Thesis
author Chang, Hui Chung
author_facet Chang, Hui Chung
author_sort Chang, Hui Chung
title Synthesis and characterization of poly(3,4- ethylenedioxythiophene)-poly(styrenesulfonate) coated polylactide/poly(3-hydroxybutyrate-co-3- hydroxyvalerate) electrospun membranes
title_short Synthesis and characterization of poly(3,4- ethylenedioxythiophene)-poly(styrenesulfonate) coated polylactide/poly(3-hydroxybutyrate-co-3- hydroxyvalerate) electrospun membranes
title_full Synthesis and characterization of poly(3,4- ethylenedioxythiophene)-poly(styrenesulfonate) coated polylactide/poly(3-hydroxybutyrate-co-3- hydroxyvalerate) electrospun membranes
title_fullStr Synthesis and characterization of poly(3,4- ethylenedioxythiophene)-poly(styrenesulfonate) coated polylactide/poly(3-hydroxybutyrate-co-3- hydroxyvalerate) electrospun membranes
title_full_unstemmed Synthesis and characterization of poly(3,4- ethylenedioxythiophene)-poly(styrenesulfonate) coated polylactide/poly(3-hydroxybutyrate-co-3- hydroxyvalerate) electrospun membranes
title_sort synthesis and characterization of poly(3,4- ethylenedioxythiophene)-poly(styrenesulfonate) coated polylactide/poly(3-hydroxybutyrate-co-3- hydroxyvalerate) electrospun membranes
publishDate 2016
url http://eprints.utm.my/id/eprint/78539/1/ChangHuiChungMFBME2016.pdf
http://eprints.utm.my/id/eprint/78539/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:110588
_version_ 1643657929296969728