Harnessing energy via piezoelectricity vibration

In an effort to eliminate the replacement of the batteries of electronic devices that real difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority o...

Full description

Saved in:
Bibliographic Details
Main Author: Teh, Sui Lin
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://eprints.utm.my/id/eprint/79559/1/TehSuiLinMFKM2016.pdf
http://eprints.utm.my/id/eprint/79559/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.79559
record_format eprints
spelling my.utm.795592018-10-31T12:58:34Z http://eprints.utm.my/id/eprint/79559/ Harnessing energy via piezoelectricity vibration Teh, Sui Lin TJ Mechanical engineering and machinery In an effort to eliminate the replacement of the batteries of electronic devices that real difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This represents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This project reviews the current state of research on piezoelectric energy harvesting devices at low frequency (<100 Hz) applications using vibrating motor and the methods that have been develop to improve the power outputs of the piezoelectric energy harvesters. This project study is divided into two main parts which are simulation from the forced vibration data and laboratory experiment on vibrating motor. The simulation results shows that as the acceleration magnitude increases, the average direct voltage also increases from 4.5 mV to 8.1mV and the average power output that could be harnessed also increased from 22.5 μW to 40.5 μW. The experimental work energy harvesting structures focused on a bimorph piezoelectric rectangular plate (two faced PZT layer bonded to a brass substrate) that would be driven by ambient vibration source (motor). Multiple tip mass value on the effect of power generated was investigated in this project. It is shown that motor speed at 100 rpm has the highest power generated both with (1667.21 μW) and without (10.15 μW) the addition of tip mass. Besides, it is also observed as the motor speed increased from 900 rpm to 1000 rpm, lower tip mass value required to optimize the power generated. 20g of tip mass value is required to generate 218.21 μW at motor speed 900 rpm, 10g of tip mass value is required to generate 626.29 μW at motor speed 1200 rpm These power output is sufficient for low powered electronics which can be used in variety of applications as indicated in the literatures reviewed. 2016 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/79559/1/TehSuiLinMFKM2016.pdf Teh, Sui Lin (2016) Harnessing energy via piezoelectricity vibration. Masters thesis, Universiti Teknologi Malaysia, Faculty of Mechanical Engineering.
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TJ Mechanical engineering and machinery
spellingShingle TJ Mechanical engineering and machinery
Teh, Sui Lin
Harnessing energy via piezoelectricity vibration
description In an effort to eliminate the replacement of the batteries of electronic devices that real difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This represents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This project reviews the current state of research on piezoelectric energy harvesting devices at low frequency (<100 Hz) applications using vibrating motor and the methods that have been develop to improve the power outputs of the piezoelectric energy harvesters. This project study is divided into two main parts which are simulation from the forced vibration data and laboratory experiment on vibrating motor. The simulation results shows that as the acceleration magnitude increases, the average direct voltage also increases from 4.5 mV to 8.1mV and the average power output that could be harnessed also increased from 22.5 μW to 40.5 μW. The experimental work energy harvesting structures focused on a bimorph piezoelectric rectangular plate (two faced PZT layer bonded to a brass substrate) that would be driven by ambient vibration source (motor). Multiple tip mass value on the effect of power generated was investigated in this project. It is shown that motor speed at 100 rpm has the highest power generated both with (1667.21 μW) and without (10.15 μW) the addition of tip mass. Besides, it is also observed as the motor speed increased from 900 rpm to 1000 rpm, lower tip mass value required to optimize the power generated. 20g of tip mass value is required to generate 218.21 μW at motor speed 900 rpm, 10g of tip mass value is required to generate 626.29 μW at motor speed 1200 rpm These power output is sufficient for low powered electronics which can be used in variety of applications as indicated in the literatures reviewed.
format Thesis
author Teh, Sui Lin
author_facet Teh, Sui Lin
author_sort Teh, Sui Lin
title Harnessing energy via piezoelectricity vibration
title_short Harnessing energy via piezoelectricity vibration
title_full Harnessing energy via piezoelectricity vibration
title_fullStr Harnessing energy via piezoelectricity vibration
title_full_unstemmed Harnessing energy via piezoelectricity vibration
title_sort harnessing energy via piezoelectricity vibration
publishDate 2016
url http://eprints.utm.my/id/eprint/79559/1/TehSuiLinMFKM2016.pdf
http://eprints.utm.my/id/eprint/79559/
_version_ 1643658230861135872