Detection of arcing fault in underground distribution cable using artificial neural network

Arcing faults can cause substantial damage if they are not detected and isolated promptly. Detection of arcing faults has always been a difficult issue. Those faults tend to be of high fault resistance and hence the fault current is well below maximum load limit and its detection is not possible thr...

Full description

Saved in:
Bibliographic Details
Main Author: Chan, Wei Kian
Format: Thesis
Language:English
Published: 2004
Subjects:
Online Access:http://eprints.utm.my/id/eprint/7994/1/ChanWeiKianMFKE2004.pdf
http://eprints.utm.my/id/eprint/7994/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:11515
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.7994
record_format eprints
spelling my.utm.79942018-09-19T05:07:10Z http://eprints.utm.my/id/eprint/7994/ Detection of arcing fault in underground distribution cable using artificial neural network Chan, Wei Kian TK Electrical engineering. Electronics Nuclear engineering QA75 Electronic computers. Computer science Arcing faults can cause substantial damage if they are not detected and isolated promptly. Detection of arcing faults has always been a difficult issue. Those faults tend to be of high fault resistance and hence the fault current is well below maximum load limit and its detection is not possible through the use of overcurrent relays. In the case of overhead lines, the gas generated through arcing is dispersed rapidly. But in the case of underground cables, the generated gas could travel along cable duct and could result in explosion at manhole location, which is dangerous to personnel. The damage can be reduced if arcing faults are detected before they develop into major faults. The general aim of this study is to develop an arcing fault detection algorithm which can detect the presence of arcing fault in underground distribution cable. Arcing faults data are collected through simulations and experiments. The simulations involve the modelling of a simple underground distribution system and two TNB underground distribution systems using Power System Computer Aided Design 1 Electromagnetic Transient for Direct Current (PSCADIEMTDC) program. On the other hand, the experiments are conducted in research laboratory. The data collected from the simple underground distribution system are analysed in both time domain and frequency domain to identify the characteristics of arcing fault. A Multi-layer Perceptron (MLP) with Backpropagation (BP) learning is used to discriminate arcing faults from normal load condition. The detection results revealed satisfactory performance in all test cases. 2004-05 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/7994/1/ChanWeiKianMFKE2004.pdf Chan, Wei Kian (2004) Detection of arcing fault in underground distribution cable using artificial neural network. Masters thesis, Universiti Teknologi Malaysia, Faculty of Electrical Engineering. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:11515
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TK Electrical engineering. Electronics Nuclear engineering
QA75 Electronic computers. Computer science
spellingShingle TK Electrical engineering. Electronics Nuclear engineering
QA75 Electronic computers. Computer science
Chan, Wei Kian
Detection of arcing fault in underground distribution cable using artificial neural network
description Arcing faults can cause substantial damage if they are not detected and isolated promptly. Detection of arcing faults has always been a difficult issue. Those faults tend to be of high fault resistance and hence the fault current is well below maximum load limit and its detection is not possible through the use of overcurrent relays. In the case of overhead lines, the gas generated through arcing is dispersed rapidly. But in the case of underground cables, the generated gas could travel along cable duct and could result in explosion at manhole location, which is dangerous to personnel. The damage can be reduced if arcing faults are detected before they develop into major faults. The general aim of this study is to develop an arcing fault detection algorithm which can detect the presence of arcing fault in underground distribution cable. Arcing faults data are collected through simulations and experiments. The simulations involve the modelling of a simple underground distribution system and two TNB underground distribution systems using Power System Computer Aided Design 1 Electromagnetic Transient for Direct Current (PSCADIEMTDC) program. On the other hand, the experiments are conducted in research laboratory. The data collected from the simple underground distribution system are analysed in both time domain and frequency domain to identify the characteristics of arcing fault. A Multi-layer Perceptron (MLP) with Backpropagation (BP) learning is used to discriminate arcing faults from normal load condition. The detection results revealed satisfactory performance in all test cases.
format Thesis
author Chan, Wei Kian
author_facet Chan, Wei Kian
author_sort Chan, Wei Kian
title Detection of arcing fault in underground distribution cable using artificial neural network
title_short Detection of arcing fault in underground distribution cable using artificial neural network
title_full Detection of arcing fault in underground distribution cable using artificial neural network
title_fullStr Detection of arcing fault in underground distribution cable using artificial neural network
title_full_unstemmed Detection of arcing fault in underground distribution cable using artificial neural network
title_sort detection of arcing fault in underground distribution cable using artificial neural network
publishDate 2004
url http://eprints.utm.my/id/eprint/7994/1/ChanWeiKianMFKE2004.pdf
http://eprints.utm.my/id/eprint/7994/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:11515
_version_ 1643644896865681408