New variants of insertion and deletion systems in formal languages

In formal language theory, the operations of insertion and deletion are generalizations of the operations of concatenation and left/right quotients. The insertion operation interpolates one word in an arbitrary place within the other while the deletion operation extracts the word from an arbitrary p...

Full description

Saved in:
Bibliographic Details
Main Author: Yosman, Ahmad Firdaus
Format: Thesis
Language:English
Published: 2017
Subjects:
Online Access:http://eprints.utm.my/id/eprint/80862/1/AhmadFirdausYosmanMFS2017.pdf
http://eprints.utm.my/id/eprint/80862/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:124931
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.80862
record_format eprints
spelling my.utm.808622019-07-24T00:08:13Z http://eprints.utm.my/id/eprint/80862/ New variants of insertion and deletion systems in formal languages Yosman, Ahmad Firdaus QA Mathematics In formal language theory, the operations of insertion and deletion are generalizations of the operations of concatenation and left/right quotients. The insertion operation interpolates one word in an arbitrary place within the other while the deletion operation extracts the word from an arbitrary position of another word. Previously, insertion and deletion have been applied to model the recombinance of DNA and RNA molecules in DNA computing, where contexts were used to mimic the site of enzymatic activity. However, in this research, new systems are introduced by taking motivation from the atomic behaviour of chemical compounds during chemical bonding, in which the concept of a balanced arrangement is required for a successful bonding. Besides that, the relation between insertion and deletion systems and group theory are also shown. Here, insertion and deletion systems are constructed with bonds and also interactions; hence new variants of insertion and deletion systems are introduced. The first is bonded systems, which are introduced by defining systems with restrictions that work on the bonding alphabet. The other variant is systems with interactions, which are introduced by utilizing the binary operations of certain groups as the systems’ interactions. From this research, the generative power and closure properties of the newly introduced bonded systems are determined, and a language hierarchy is constructed. In addition, group generating insertion systems are introduced and illustrated using Cayley graphs. Therefore, this research introduced new variants of insertion and deletion systems that contribute to the advancement of DNA computing and also showcased their application in group theory. 2017-08 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/80862/1/AhmadFirdausYosmanMFS2017.pdf Yosman, Ahmad Firdaus (2017) New variants of insertion and deletion systems in formal languages. Masters thesis, Universiti Teknologi Malaysia, Faculty of Science. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:124931
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic QA Mathematics
spellingShingle QA Mathematics
Yosman, Ahmad Firdaus
New variants of insertion and deletion systems in formal languages
description In formal language theory, the operations of insertion and deletion are generalizations of the operations of concatenation and left/right quotients. The insertion operation interpolates one word in an arbitrary place within the other while the deletion operation extracts the word from an arbitrary position of another word. Previously, insertion and deletion have been applied to model the recombinance of DNA and RNA molecules in DNA computing, where contexts were used to mimic the site of enzymatic activity. However, in this research, new systems are introduced by taking motivation from the atomic behaviour of chemical compounds during chemical bonding, in which the concept of a balanced arrangement is required for a successful bonding. Besides that, the relation between insertion and deletion systems and group theory are also shown. Here, insertion and deletion systems are constructed with bonds and also interactions; hence new variants of insertion and deletion systems are introduced. The first is bonded systems, which are introduced by defining systems with restrictions that work on the bonding alphabet. The other variant is systems with interactions, which are introduced by utilizing the binary operations of certain groups as the systems’ interactions. From this research, the generative power and closure properties of the newly introduced bonded systems are determined, and a language hierarchy is constructed. In addition, group generating insertion systems are introduced and illustrated using Cayley graphs. Therefore, this research introduced new variants of insertion and deletion systems that contribute to the advancement of DNA computing and also showcased their application in group theory.
format Thesis
author Yosman, Ahmad Firdaus
author_facet Yosman, Ahmad Firdaus
author_sort Yosman, Ahmad Firdaus
title New variants of insertion and deletion systems in formal languages
title_short New variants of insertion and deletion systems in formal languages
title_full New variants of insertion and deletion systems in formal languages
title_fullStr New variants of insertion and deletion systems in formal languages
title_full_unstemmed New variants of insertion and deletion systems in formal languages
title_sort new variants of insertion and deletion systems in formal languages
publishDate 2017
url http://eprints.utm.my/id/eprint/80862/1/AhmadFirdausYosmanMFS2017.pdf
http://eprints.utm.my/id/eprint/80862/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:124931
_version_ 1643658538954784768