Adsorption of lead (ii) from aqueous solution using nano-papaya peel

The presence of toxic heavy metals like lead (Pb(II)) in water resources due to industrialization is known to be a major environmental concern in many communities. Agrowaste has been the focus of studies as a reliable source of sustainable adsorbents for heavy metal removal from aqueous solutions. I...

Full description

Saved in:
Bibliographic Details
Main Author: Abbaszadeh, Sahar
Format: Thesis
Language:English
Published: 2017
Subjects:
Online Access:http://eprints.utm.my/id/eprint/81680/1/SaharAbbaszadehPFChE2017.pdf
http://eprints.utm.my/id/eprint/81680/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:126074
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.81680
record_format eprints
spelling my.utm.816802019-09-12T00:19:18Z http://eprints.utm.my/id/eprint/81680/ Adsorption of lead (ii) from aqueous solution using nano-papaya peel Abbaszadeh, Sahar TP Chemical technology The presence of toxic heavy metals like lead (Pb(II)) in water resources due to industrialization is known to be a major environmental concern in many communities. Agrowaste has been the focus of studies as a reliable source of sustainable adsorbents for heavy metal removal from aqueous solutions. In this study, papaya peel has been introduced as a new source of agro-waste. The high annual papaya production in Malaysia potentially provides a good base to use its waste to develop an inexpensive adsorbent. Most of previous studies only consider the raw or carbon-active form of bioadsorbents. The present study aims to develop potential adsorption media for the removal of Pb(II) from contaminated water. While raw and carbon-activated adsorbents from papaya peel agro-waste are considered, a new nano adsorbent has been developed and evaluated in this research. The equilibrium sorptions of Pb(II) from an aqueous solution using synthesized adsorbents of activated carbon papaya peel (AC-PP) and nano-papaya peel (Nano-PP) were investigated. The synthesized adsorbents were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, field emission scanning electron microscopy, x-ray diffractometery and x-ray photoelectron spectroscopy. The batch experiments were carried out considering various Pb(II) concentrations of 10, 20, 50, 100, 200, and 400 mg/L, by changing variables of pH, adsorbent dosage, initial metal concentration, and temperature and contact time. The removal efficiency of the adsorbed amount of metal ions was considered relative to the equilibrium parameters. Desorption and regeneration studies were additionally conducted to evaluate reusability. The developed adsorbents showed excellent performance. Pb(II) was removed after 2 h of agitation, reaching optimal removal percentages of 82.6% using AC-PP (100 mg dosage) and 99.39 % using Nano-PP (50 mg dosage) after 3 h, at pH=5, in ambient condition. Equilibrium adsorption isotherms and kinetics were reviewed using the different isotherm models of Langmuir, Freundlich, and Temkin and kinetic models of the pseudo-first order, pseudo-second order, and intra-particle diffusion. The adsorption processes of Pb(II) onto Nano-PP and AC-PP were better described by the Langmuir isotherm model indicating monolayer Pb(II) adsorption onto the surface of the developed adsorbents and the adsorption kinetics was well fitted with the pseudo second-order kinetic model. Additionally, thermodynamic results confirmed the spontaneous adsorption processes with exothermic and endothermic nature onto surface of AC-PP and Nano-PP, respectively. The results obtained, especially for Nano-PP, confirm the capability of papaya peel adsorbents as a new, low-cost, efficient and environmentally friendly alternative for Pb(II) removal from contaminated water. 2017 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/81680/1/SaharAbbaszadehPFChE2017.pdf Abbaszadeh, Sahar (2017) Adsorption of lead (ii) from aqueous solution using nano-papaya peel. PhD thesis, Universiti Teknologi Malaysia. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:126074
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TP Chemical technology
spellingShingle TP Chemical technology
Abbaszadeh, Sahar
Adsorption of lead (ii) from aqueous solution using nano-papaya peel
description The presence of toxic heavy metals like lead (Pb(II)) in water resources due to industrialization is known to be a major environmental concern in many communities. Agrowaste has been the focus of studies as a reliable source of sustainable adsorbents for heavy metal removal from aqueous solutions. In this study, papaya peel has been introduced as a new source of agro-waste. The high annual papaya production in Malaysia potentially provides a good base to use its waste to develop an inexpensive adsorbent. Most of previous studies only consider the raw or carbon-active form of bioadsorbents. The present study aims to develop potential adsorption media for the removal of Pb(II) from contaminated water. While raw and carbon-activated adsorbents from papaya peel agro-waste are considered, a new nano adsorbent has been developed and evaluated in this research. The equilibrium sorptions of Pb(II) from an aqueous solution using synthesized adsorbents of activated carbon papaya peel (AC-PP) and nano-papaya peel (Nano-PP) were investigated. The synthesized adsorbents were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, field emission scanning electron microscopy, x-ray diffractometery and x-ray photoelectron spectroscopy. The batch experiments were carried out considering various Pb(II) concentrations of 10, 20, 50, 100, 200, and 400 mg/L, by changing variables of pH, adsorbent dosage, initial metal concentration, and temperature and contact time. The removal efficiency of the adsorbed amount of metal ions was considered relative to the equilibrium parameters. Desorption and regeneration studies were additionally conducted to evaluate reusability. The developed adsorbents showed excellent performance. Pb(II) was removed after 2 h of agitation, reaching optimal removal percentages of 82.6% using AC-PP (100 mg dosage) and 99.39 % using Nano-PP (50 mg dosage) after 3 h, at pH=5, in ambient condition. Equilibrium adsorption isotherms and kinetics were reviewed using the different isotherm models of Langmuir, Freundlich, and Temkin and kinetic models of the pseudo-first order, pseudo-second order, and intra-particle diffusion. The adsorption processes of Pb(II) onto Nano-PP and AC-PP were better described by the Langmuir isotherm model indicating monolayer Pb(II) adsorption onto the surface of the developed adsorbents and the adsorption kinetics was well fitted with the pseudo second-order kinetic model. Additionally, thermodynamic results confirmed the spontaneous adsorption processes with exothermic and endothermic nature onto surface of AC-PP and Nano-PP, respectively. The results obtained, especially for Nano-PP, confirm the capability of papaya peel adsorbents as a new, low-cost, efficient and environmentally friendly alternative for Pb(II) removal from contaminated water.
format Thesis
author Abbaszadeh, Sahar
author_facet Abbaszadeh, Sahar
author_sort Abbaszadeh, Sahar
title Adsorption of lead (ii) from aqueous solution using nano-papaya peel
title_short Adsorption of lead (ii) from aqueous solution using nano-papaya peel
title_full Adsorption of lead (ii) from aqueous solution using nano-papaya peel
title_fullStr Adsorption of lead (ii) from aqueous solution using nano-papaya peel
title_full_unstemmed Adsorption of lead (ii) from aqueous solution using nano-papaya peel
title_sort adsorption of lead (ii) from aqueous solution using nano-papaya peel
publishDate 2017
url http://eprints.utm.my/id/eprint/81680/1/SaharAbbaszadehPFChE2017.pdf
http://eprints.utm.my/id/eprint/81680/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:126074
_version_ 1646010332085223424